Меню

Укажите погрешности трансформатора тока

Погрешности трансформаторов тока

Коэффициент трансформации ТТ так же, как у ТН, не является строго постоянной величиной и из-за погрешностей может отличаться от номинального значения. Погрешности ТТ зависят главным образом от кратности первичного тока по отношению к номинальному току первичной обмотки и от нагрузки, подключенной к вторичной обмотке. При увеличении сопротивления нагрузки или тока выше определенных значений погрешность возрастает и ТТ переходит в другой класс точности.

Для измерительных приборов погрешность относится к зоне нагрузочных токов . Эта погрешность именуется классом точности и может быть равна 0,2; 0,5; 1,0; 3,0%.

Требования к работе ТТ, питающих защиту, существенно отличаются от требований к ТТ, питающим измерительные приборы. Если ТТ, питающие измерительные приборы, должны работать точно в пределах своего класса при токах нагрузки, близких к их номинальному току, то ТТ, питающие релейную защиту, должны работать с достаточной точностью при прохождении токов КЗ, значительно превышающих номинальный ток ТТ. Для целей защиты выпускаются трансформаторы тока класса Р или Д (для дифференциальных защит) в которых не нормируется погрешность при малых (нагрузочных) токах. В настоящее время выпускаются трансформаторы тока классов 10Р и 5Р, погрешность которых нормируется во всем диапазоне токов.

Правила устройства электроустановок требуют, чтобы ТТ, предназначенные для питания релейной защиты, имели погрешность, как правило, не более 10%. Большая погрешность допускается в отдельных случаях, когда это не приводит к неправильным действиям релейной защиты. Погрешности возникают вследствие того, что действительный процесс трансформации в ТТ происходит с затратой мощности, которая расходуется на создание в сердечнике магнитного потока, перемагничивание стали сердечника (гистерезис), потери от вихревых токов, нагрев обмоток.

Рис. 2.3. Схема замещения ТТ Рис. 2.4. Упрощенная векторная диаграмма ТТ

Процесс трансформации тока хорошо иллюстрируется схемой замещения ТТ, приведенной на рис. 2.3. На этой схеме Z1 и Z2 – сопротивления первичной и вторичной обмоток, a – сопротивление ветви намагничивания, которое характеризует указанные выше потери мощности.

Из схемы замещения видно, что первичный ток I1 входящий в начало первичной обмотки Н, проходит по её сопротивлению Z1 и в точке разветвляется по двум параллельным ветвям. Основная часть тока, являющаяся вторичным током I2, замыкается через сопротивление вторичной обмотки Z2 и сопротивление нагрузки , состоящее из сопротивлений реле, приборов и соединительных проводов. Другая часть первичного тока замыкается через сопротивление ветви намагничивания и, следовательно, в реле, подключенное к вторичной обмотке ТТ, не попадает. Поскольку из всех затрат мощности наибольшая часть приходится на создание магнитного потока в сердечнике, то ветвь между точками а и б схемы замещения ТТ называется ветвью намагничивания и весь ток , проходящий по этой ветви, – током намагничивания.

Таким образом, схема замещения показывает, что во вторичную обмотку ТТ поступает не весь трансформированный первичный ток, равный , а его часть, и что, следовательно, процесс трансформации происходит с погрешностями.

При размыкании цепи вторичной обмотки ТТ, он превращается в повышающий трансформатор, резко возрастает ток намагничивания: (рис 2.3) и, при достаточном уровне тока, индукция в сердечнике достигает насыщения. Вследствие насыщения сердечника ТТ, при синусоидальном первичном токе, магнитный поток в сердечнике будет иметь не синусоидальную, а трапециоидальную форму. Поэтому, ЭДС во вторичной обмотке, пропорциональная скорости изменения магнитного потока, в моменты перехода его через нулевые значения будет очень велика, и может превышать 1000 В, что опасно не только для обслуживающего персонала, но и для межвитковой изоляции трансформаторов тока (возможно межвитковое замыкание). Кроме появления опасного напряжения на разомкнутой вторичной обмотке, может иметь место повышенный нагрев стального сердечника из-за больших потерь в стали (так называемый «пожар стали»). Это не только может привести к повреждению изоляции, но и к увеличению погрешностей трансформаторов тока вследствие остаточного намагничивания сердечника. При межвитковом замыкании вторичной обмотки ТТ резко возрастает ток намагничивания, а ток на его выходе резко уменьшается (или полностью отсутствует). Диагностировать витковое замыкание ТТ можно сравнив его характеристику намагничивания (зависимость напряжения на вторичной обмотке от проходящего по ней тока) с характеристикой исправного ТТ (характеристика значительно понижается).

На рис. 2.4 приведена упрощенная векторная диаграмма ТТ из которой видно, что вектор вторичного тока I2 меньше значения первичного тока, деленного на коэффициент трансформации на величину и сдвинут относительно него на угол δ. Таким образом, соотношение значений первичного и вторичного токов в действительности имеет вид:

Различают следующие виды погрешностей ТТ. Токовая погрешность, или погрешность в коэффициенте трансформации, определяется как арифметическая разность первичного тока, поделённого на номинальный коэффициент трансформации , и измеренного (действительного) вторичного тока (отрезок на диаграмме рис. 4.4):

Угловая погрешность определяется как угол δ сдвига вектора вторичного тока I2 относительно вектора первичного тока I1 (см. рис. 2.4) и считается положительной, когда I2 опережает I1.

Полная погрешность (ε) определяется как выраженное в процентах отношение действующего значения разности мгновенных значений первичного и вторичного токов к действующему значению первичного тока.

При синусоидальных первичном и вторичном токах: . Из рассмотренного следует, что причиной возникновения погрешностей у трансформаторов тока является прохождение тока намагничивания, т.е. того самого тока, который создаёт в сердечнике ТТ рабочий магнитный поток, обеспечивающий трансформацию первичного тока во вторичную обмотку. Чем меньше ток намагничивания, тем меньше погрешности ТТ.

Как видно из схемы замещения (рис. 2.3), ток намагничивания зависит от ЭДС Е2 и сопротивления ветви намагничивания .

Электродвижущая сила Е2 может быть определена как падение напряжения от тока I2 в сопротивлении вторичной обмотки Z2 и сопротивлении нагрузки , т. е.:

Сопротивление ветви намагничивания зависит от конструкции трансформаторов тока и качества стали, из которой выполнен сердечник. Это сопротивление не является постоянным, а зависит от характеристики намагничивания стали. При насыщении стали сердечника ТТ, резко уменьшается, что приводит к возрастанию и как следствие этого к возрастанию погрешностей ТТ.

Таким образом, условиями, определяющими погрешности трансформаторов тока, являются: отношение, т.е. кратность, первичного тока, проходящего через ТТ, к его номинальному току и нагрузка, подключённая к его вторичной обмотке.

Для увеличения допустимой вторичной нагрузки применяют трансформаторы тока с номинальным током вторичной обмотки 1 А, вместо 5 А. Одноамперные трансформаторы тока могут нести нагрузку в 25 раз больше, чем пятиамперные, имеющие такие же конструктивные параметры и тот же номинальный ток первичной обмотки. Конечно, потребляемая мощность аппаратуры при этом остается прежней, и её сопротивление также увеличивается в 25 раз, однако получается существенный выигрыш за счёт возможности применять длинные кабели с жилами небольшого сечения. По этой причине, трансформаторы тока со вторичными токами 1 А нашли применение, в основном, на мощных подстанциях сверхвысокого напряжения, где требуется прокладывать длинные кабели. В сетях напряжением 6–35 кВ, как правило, применяются 5-ти амперные трансформаторы тока, которые упрощают конструкцию за счёт того что требуется наматывать в 5 раз меньшее количество витков. Одноамперные трансформаторы тока нашли применение также в ячейках фирмы «Таврида – Электрик», где переход на вторичный ток 1 А в сочетании с малым потреблением современных релейных защит позволил выполнить малогабаритные трансформаторы тока, которые только и можно разместить в выпускаемых ею малогабаритных ячейках.

Читайте также:  Какое из приведенных свойств соответствует последовательному соединению ветвей при постоянном токе

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Трансформаторы тока в переходных режимах

Измерительные трансформаторы являются неотъемлемой частью любой энергоустановки. С помощью измерительных трансформаторов осуществляется учет электроэнергии, измерения параметров сети, они являются первичными источниками сигнала для релейных защит, устройств телемеханики и автоматики. Мы уже затрагивали тему выбора трансформаторов тока в целях учета электрической энергии, сегодня уделим внимание общим принципам их классификации и конструкции, а также нормативно-технической базе в части обеспечения функционала релейных защит.

В первую очередь нужно отметить, что важным аспектом работы современных микропроцессорных релейных защит является их быстродействие, которое должно обеспечиваться не только собственными возможностями программно-технических комплексов устройств РЗА, но и возможностями первичных аналоговых преобразователей, таких как трансформаторы тока.

Токовые цепи релейных защит, как правило, питаются таким же образом, как приборы учета и устройства измерения — источником аналогового сигнала для них являются трансформаторы тока. Отличие состоит в условиях работы: измерительные приборы работают в классе точности при фактическом первичном токе, не превышающем номинального, тогда как устройства релейной защиты рассчитаны на работу в режимах короткого замыкания или перегрузки, когда фактический ток значительно превышает номинальный ток трансформатора. К тому же, такие режимы являются переходными — в составе первичного тока появляются свободные апериодические составляющие.

Как известно, работа трансформатора тока характеризуется уравнением намагничивающих сил: I1 • w1 + I2 • w2 = Iнам • w1

I1 ток в первичной обмотке;
w1количество витков первичной обмотки;
I2 ток во вторичной обмотке;
w2 количество витков вторичной обмотки;
Iнам ток намагничивания.

Из приведенного выражения видно, что первичный ток трансформируется во вторичную обмотку не полностью — часть его уходит на формирование тока намагничивания, создающего рабочий магнитный поток в сердечнике ТТ (поток, формирующий ЭДС во вторичной обмотке, под воздествием которой там и протекает ток). Это происходит как в установившихся, так и в переходных режимах. В переходном процессе каждая составляющая, протекая по первичной обмотке трансформатора тока, делится на две части: одна трансформируется во вторичную обмотку, а вторая идет на намагничивание сердечника. В связи с тем, что скорость изменения апериодической составляющей гораздо меньше скорости изменения переменной составляющей, а периодическая составляющая плохо трансформируется во вторичную цепь и большая ее часть идет на насыщение сердечника. Это, в свою очередь, ухудшает трансформацию периодической составляющей во вторичную цепь и также повышает долю этого тока в токе намагничивания. Возникает так называемое, «подмагничивающее действие». Учитывая, что в сердечниках ТТ во многих случаях имеет место остаточная магнитная индукция, которая сохраняется в течение длительного времени (дни, недели и даже месяцы), наихудший режим работы возникает в случае, если остаточный магнитный поток в сердечнике совпадает по направлению с магнитным потоком, создаваемым апериодической составляющей тока намагничивания.

В результате трансформатор начинает работать в режиме насыщения, т.е. когда ток намагничивания растет значительно быстрее рабочего магнитного потока.

Все вышеописанное вносит искажения в величину и фазу вторичного тока, создавая тем самым погрешность (именно величина тока намагничивания определяет точность работы ТТ). И, несмотря на то, что в релейных защитах точность траснформации имеет гораздо меньшее значение, чем в измерительной технике, погрешности могут быть настолько велики, что могут вызвать существенную задержку срабатывания устройств РЗА, а также их ложное действие или отказ. Это особенно актуально для дифференциальных защит, т.к. вместе с токами намагничивания ТТ возрастают и токи небаланса в схеме защиты. Также ситуацию может ухудшить применение промежуточных быстронасыщающихся трансформаторов тока.

Существует несколько способов борьбы с остаточной намагниченностью сердечника, как с одной из основных причин возникновения насыщения. Один из методов — применение трансформаторов тока с сердечниками без стали, обладающих линейными свойствами. Но использование таких трансформаторов тока может быть весьма ограниченным, в связи с небольшой мощностью вторичных обмоток. Второй метод (наиболее распостраненный) — изготовление сердечников из электротехнической стали, имеющих немагнитные зазоры. Этот метод по сравнению с использованием сердечников без стали позволяет конструировать сердечники меньшего сечения. Однако в России трансформаторы тока с такими сердечниками не выпускались и не выпускаются. Нужно отметить, что европейские производители успешно производят такие изделия в вполне приемлемых габаритах, размещая в корпусе трансформатора как обмотки с привычными нам классами точности, так и специализированные обмотки для работы РЗА в переходных процессах. Почему же сложилась такая ситуация? Наверное, отнюдь не потому, что российские конструкторы гораздо хуже европейских знают свое дело и не потому, что эксплуатирующие организации не желают располагать таким оборудованием.

Рассмотрим действующую нормативную базу, регламентирующую производство трансформаторов тока. Действующий сегодня ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» включает в себя два класса точности релейных защит — 5Р и 10Р (пределы допускаемых погрешностей — см. Таблицу 1). Ни в одном из этих классов не нормируется работа ТТ в переходных режимах — указанные в ГОСТ погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).

Таблица 1. Пределы допускаемых погрешностей вторичных обмоток для защиты в установившемся режиме при номинальной вторичной нагрузке

Источник



Укажите погрешности трансформатора тока

исследования,
особенности,
рекомендации

Владимир Сопьяник,
д.т.н., ведущий научный сотрудник
РУП «БелТЭИ», г. Минск

Точность коммерческого учета электроэнергии в системе определяется работой измерительных трансформаторов тока (ТТ), напряжения (ТН) и электросчетчика. Повышение класса точности только одного элемента системы – электросчетчиков не даст желаемого эффекта. Необходимо также обеспечить соответствующую работу трансформаторов, в частности, трансформаторов тока.

Точность их работы характеризуется токовой (fтт) и угловой ( j тт) погрешностями. Эти погрешности, в частности, рассматриваются в публикациях [1, 2], в которых исследуются и анализируются погрешности работы ТТ в системах учета электроэнергии. Чтобы оценить влияние первичных токов и вторичных нагрузок на токовые и угловые погрешности работы трансформаторов, были проведены метрологические исследования ТТ.

Исследования

Для изучения были выбраны трансформаторы тока типа ТОЛ-10-150/5 класса 0,5 (W1 = 4 вит., W2= 120 вит.) и типа ТЛМ-10-300/5 класса 0,5 (W1= 2 вит., W2 = 119 вит.).

Работы велись на метрологической установке при изменении первичного тока ТТ в пределах 1–120% Iном и номинальной вторичной нагрузке Zном при cos j = 0,8 и cos j = 1,0. Для оценки стабильности (систематичности) токовых и угловых погрешностей работы ТТ испытания проводились на одних и тех же образцах ТТ, но с разницей в один и более месяц.

Читайте также:  Измерение параметров электрических цепей постоянного тока

На рис. 1 приведены кривые токовых погрешностей работы ТТ типа ТОЛ-10-150/5 в зависимости от величины первичного тока при номинальной вторичной нагрузке Zном = 0,4 Ом, cos j = 0,8 и cos j = 1,0.

Токовые погрешности снимались:

  • f1 – при вторичной нагрузке Zном= 0,4 Ом, cos j = 0,8;
  • f2 – при таких же исходных данных, но на месяц позже;
  • f3 – при чисто активной номинальной вторичной нагрузке (cos j = 1,0);
  • f4 – при тех же исходных данных, что и токовая погрешность f3, но на месяц позже.

Следует заметить, что все токовые погрешности ТТ типа ТОЛ-10-150/5 имеют отрицательный знак и величина их зависит как от значений первичного тока, так и от величины и активно-индуктивного характера вторичной нагрузки, т.е. fтт = j (I1 , Zнагр ). Анализ кривых токовых погрешностей показывает, что токовая погрешность ТТ минимальна при чисто активной вторичной нагрузке.

Рис. 1. Токовые погрешности ТТ типа ТОЛ-10-150/5 Рис. 2. Токовые погрешности ТТ типа ТЛМ-10-300/5

На рис. 2 приведены кривые токовых погрешностей работы ТТ типа ТЛМ-10-300/5 в зависимости от величины первичного тока при номинальной вторичной нагрузке Zном = 0,4 Ом, cos j = 0,8 и cos j = 1,0. ТТ ТЛМ-10-300/5 имеет коррекцию по виткам вторичной обмотки (отмотка на один виток от номинального значения). Токовые погрешности снимались:

  • f1 – при вторичной нагрузке Zном = 0,4 Ом, cos j = 0,8;
  • f2 – при тех же исходных данных, что и f1, но на месяц позже;
  • f3 – при чисто активной вторичной нагрузке (Zном = 0,4 Ом, cos j = 1,0).

Из рис. 2 видно, что токовая погрешность ТТ типа ТЛМ-10-300/5 при малых первичных токах (порядка 1–25% Iном ) имеет отрицательный знак, по мере увеличения первичного тока она уменьшается и становится равной нулю, а затем с ростом первичного тока она увеличивается и становится положительной. (Некоторое несовпадение на рисунке 2 характеристик токовых погрешностей (f1, f2) можно объяснить неточностью задания значений первичных токов).

Рис. 3. Угловые погрешности ТТ типа ТОЛ-10-150/5 Рис. 4. Угловые погрешности ТТ типа ТЛМ-10-300/5

На рис. 3, 4 приведены кривые угловых погрешностей работы ТТ типа ТОЛ-10-150/5 (рис. 3) и ТЛМ-10-300/5 (рис. 4) при тех же первичных токах и вторичных нагрузках (Zном = 0,4 Ом, cos j = 0,8 и cos j = 1,0). Из рис. 3, 4 видно, что угловые погрешности ТТ максимальны при чисто активной вторичной нагрузке (Zном = 0,4 Ом, cos j = 1,0) и почти на 40–50% меньше при активно-индуктивной вторичной нагрузке (Zном = 0,4 Ом, cos j = 0,8).

Как угловые, так и токовые погрешности работы ТТ носят систематический характер и зависят от величины протекающего первичного тока, от величины вторичной нагрузки и ее активно-индуктивного характера.

Итоги

ТТ могут иметь как отрицательные, так и положительные значения токовых погрешностей работы, как показали их метрологические испытания, проведенные в широком диапазоне изменения первичных токов и вторичных нагрузок. Зависимость токовой погрешности работы ТТ можно выразить следующим образом:

где I1, I2 – действующие значения первичного и вторичного токов ТТ, а nH – номинальный коэффициент трансформации ТТ.

Токовая погрешность обусловлена потерями в стали ТТ, намагничиванием сердечника при трансформации первичного тока во вторичную цепь и величиной вторичной нагрузки. Если витковый коэффициент трансформации ТТ kвит = W2 / W1 равен коэффициенту трансформации nн = I / I, то токовая погрешность ТТ всегда отрицательная [3].

Если же kвит меньше nн из-за витковой коррекции вторичной обмотки (уменьшение числа ее витков отмоткой 1-2 витков от номинального значения), то токовая погрешность ТТ в зависимости от величины первичного тока может быть как отрицательной, так и положительной.

Отрицательная токовая погрешность наблюдается при малых первичных токах ТТ, когда ток, расходуемый на намагничивание и потери в стали, превышает часть увеличения вторичного тока, вызванную отмоткой витков вторичной обмотки ТТ.

По мере увеличения первичного тока ТТ отрицательная токовая погрешность уменьшается до нуля, а затем становится положительной. Дальнейшее увеличение первичного тока приводит к росту вторичного тока за счет коррекции вторичной обмотки и росту положительной токовой погрешности ТТ. На указанные процессы в ТТ влияет величина вторичной нагрузки и ее активно-индуктивный характер.

Заметим, что отрицательная токовая погрешность ТТ обуславливает недоучет выработанной производителем электрической энергии при использовании традиционных систем учета электрической энергии. Токовая погрешность ТТ зависит от величины протекающего первичного тока, вторичной нагрузки и ее активно-индуктивного характера, т.е. fтт = j ( I1, Zнагр ). Если погрешности работы измерительных ТТ и ТН носят систематический характер, то для повышения точности учета электроэнергии их следует знать и учитывать в алгоритмах расчета и учета АСКУЭ, корректируя значения измеренных токов и напряжений. Это снизит недоучет отпускаемой электроэнергии и метрологические потери энергосистем.

Такая коррекция в АСКУЭ сделает излишними требования в части повышения класса точности ТТ, используемых в системах учета электроэнергии. При этом может быть получен значительный экономический эффект как за счет повышения точности работы АСКУЭ, так и за счет того, что отпадает необходимость менять имеющиеся ТТ на аппараты с повышенным классом точности.

Токовые и угловые погрешности работы ТТ включают как систематическую (основную), так и случайные составляющие, обусловленные нагреванием магнитопровода, магнитным полем соседних магнитопроводов, и другие, существенно не влияющие на точность работы ТТ.

Погрешности при снижении потребления

Уменьшение потребления электрической энергии приводит к снижению первичных токов в ТТ до нескольких процентов номинального, что в свою очередь ведет к значительному увеличению токовых, угловых погрешностей его работы при малых первичных токах. В результате увеличиваются недоучет отпущенной энергии и коммерческие потери энергетиков. Пути уменьшения влияния погрешностей работы ТТ на коммерческий учет электроэнергии АСКУЭ изложены выше.

Повысить точность коммерческого учета электроэнергии индукционными счетчиками при снижении потребления можно заменой экс-плуатируемых трансформаторов на ТТ с меньшим номинальным первичным током или установкой новых ТТ класса 0,2S либо 0,5S с меньшими погрешностями работы при малых первичных токах [2].

Следует заметить, что более низкая, чем у ТТ, изготовленных на базе электротехнической стали, индукция насыщения ТТ классов 0,2S и 0,5S, выполненных на основе аморфного сплава, станет препятствием для использования их в схемах РЗА.

Практические рекомендации

  • При работе с системами коммерческого учета электроэнергии, необходимо учитывать, что снижение первичного тока в пределах
  • 1–20% Iном значительно повышает как токовую, так и угловую погрешности работы трансформатора.
  • Увеличение cos j вторичной нагрузки ТТ уменьшает токовую и увеличивает угловую погрешности. В системах учета вторичная нагрузка измерительных ТТ не должна превышать номинальную.
  • Метрологическую поверку измерительных ТТ целесообразно проводить при 1, 5, 10, 20, 50, 100, 120% Iном и реальной вторичной нагрузке. Акты метрологической поверки должны содержать значения токовых и угловых погрешностей работы ТТ.
  • ТТ с коррекцией по виткам вторичной обмотки (с отмоткой витков) при первичных токах в пределах 1–20% Iном обладают отрицательной токовой погрешностью, а при токах 20–30% Iном она равна или близка к нулю. При первичных токах 50–100% Iном токовая погрешность положительная. ТТ без витковой коррекции при активно-индуктивной вторичной нагрузке всегда имеют отрицательную токовую погрешность.
Читайте также:  Электрическая цепь сила тока тест

Литература

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Источник

Погрешности трансформаторов тока, пути их снижения.

Под погрешностями ТТ подразумевается отличие вектора вторичного тока I2 от вектора приведенного первичного тока I’1 по величине и углу. Это отличие обусловлено наличием тока намагничивания I’нам создающего магнитный поток Ф в сердечнике ТТ. Из схемы замещения (рис. 3.6) видно, что величина тока намагничивания I’нам, а следовательно, и погрешности ТТ зависят от соотношения сопротивлений ветви намагничивания (Z’нам) и цепи вторичного тока (Z2+Zн). Чем больше ток ответвляется в сопротивление Z’нам, тем больше погрешности ТТ.

Установлены следующие погрешности ТТ:

1. Угловая погрешность.

Она представляет собой угол между вектором первичного тока I’1 и вторичного тока I2 (d). Она выражается в градусах, минутах или сантирадианах и считается положительной, когда вектор I2 опережает вектор I’1.

2. Полная погрешность.

Точность работы ТТ, предназначенных для релейной защиты, характеризуется полной погрешностью в условиях установившегося режима. Согласно ГОСТ 7746-68 полная погрешность представляет собой действующее значение разности мгновенных значений токов i2 и i’1. Полная погрешность e, выраженная в процентах.

3. Токовая погрешность.

Токовая погрешность или погрешность в коэффициенте трансформации, определяется как арифметическая разность первичного тока, поделенного на номинальный коэффициент трансформации и измеренного действительного значения вторичного тока.

Для ограничения погрешностей нужно ограничивать величину магнитного потока Ф или магнитной индукции В=Ф/S, не допуская насыщения магнитопровода. Из принципа работы ТТ вытекает, что поток Фт, должен иметь такую величину, при которой наведенная им вторичная ЭДС Е2 была бы достаточной для компенсации падения напряжения в цепи вторичной обмотки.

Таким образом, для уменьшения погрешности ТТ должен работать в прямолинейной части характеристики намагничивания. Это условие обеспечивается:

а) конструктивными параметрами сердечниками;

б) правильностью выбора Zн;

в) снижением величины вторичного тока, что достигается выбором соответствующего коэффициентом трансформации nТ.

При эксплуатации ТТ может оказаться, что его погрешности больше заданного класса точности, а уменьшения их изменением конструктивных параметров ТТ не представляется возможным или экономически невыгодным. Поэтому используются специальные способы уменьшения погрешности. Эти способы обеспечивают уменьшение погрешностей при нормальном режиме работы ТТ, т.е. при изменении первичного тока в диапазоне от 10 до 120% номинального.
Отрицательную токовую погрешность можно уменьшить, отмотав от вторичной обмотки трансформатора тока то или иное число витков. Такой способ уменьшения токовой погрешности называется витковой коррекцией. При витковой коррекции число витков вторичной обмотки становится меньше номинального 292
числа витков. Вследствие этого уменьшается МДС вторичной обмотки, направленная против МДС первичной обмотки. Последняя остается неизменной, так как определяется только первичным током и числом витков первичной обмотки.
Уменьшение МДС вторичной обмотки будет сопровождаться увеличением МДС и намагничивания и результирующего магнитного потока Ф0. Увеличение магнитного потока Ф0 приведет к повышению ЭДС во вторичной обмотке. Вследствие этого увеличивается и вторичный ток. Увеличение вторичного тока приводит к уменьшению отрицательной токовой погрешности или даже к изменению ее знака. Результирующая токовая погрешность ТТ с витковой коррекцией равна алгебраической сумме номинальной токовой погрешности (которая всегда отрицательна) и токовой погрешности, полученной в результате отмотки, и называется действительной токовой погрешностью. Она может быть вычислена по формуле

Повысить эффективность витковой коррекции при малом числе витков оказывается возможным, если отмотать не целое, а дробное число витков (т.е. часть витка). Для этого вторичная обмотка должна иметь специальное исполнение.
Витковая коррекция является простым и широко распространенным способом уменьшения отрицательной токовой погрешности.
Изменить токовую погрешность можно одним из способов, получивших общее название компенсации погрешностей. Большая часть способов компенсации погрешностей ТТ основана на свойстве ферромагнитных материалов изменять свою проницаемость в зависимости от магнитной индукции. Искусственно изменяя магнитную индукцию в магнитопроводе, можно увеличить его магнитную проницаемость и тем самым снизить погрешность ТТ.
Компенсацию погрешностей можно осуществить следующими способами: 1) спрямлением кривой намагничивания; 2) подмагничиванием магнитопровода; 3) созданием нулевого потока; 4) перераспределением потоков рассеяния.

9. Схема релейной защиты АД (Uном. АД=380 В.).

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ НАПРЯЖЕНИЕМ НИЖЕ 1000 В

Защиту электродвигателей напряжением 500, 380 и 220 В осуществляют, исходя из тех же требований, что и к электродвигателям более высоких напряжений. Для этих электродвигателей применяются мгновенная РЗ от междуфазных КЗ, РЗ от перегрузки, РЗ минимального напряжения. Защита от КЗ осуществляется с помощью плавких предохранителей, а также максимальных токовых реле прямого или косвенного действия. На электродвигателях напряжением до 500 В широко применяются аппараты, в которых совмещены устройства РЗ и управления — магнитные пускатели и автоматические выключатели.

Магнитными пускателями называются трехфазные автоматические выключатели низкого напряжения (контакторы), рассчитанные на разрыв нормального рабочего тока двигателя
и тока его перегрузки. Отключение токов КЗ при применении магнитного пускателя возлагается на последовательно с ним включаемые предохранители.

Магнитные пускатели (рис. 19.17) в большинстве случаев не имеют защелки и во включенном положении удерживаются действием электромагнита YA, обмотка которого подключена на напряжение питания. Включение магнитного пускателя осуществляется нажатием кнопки SB1. При этом замыкается цепь обмотки удерживающего электромагнита, якорь которого притягивается и замыкает механически связанные с ним силовые контакты. Кнопка SB1 имеет самовозврат, поэтому после ее размыкания цепь обмотки электромагнита остается замкнутой через вспомогательный контакт SQ, шунтирующий кнопку SB1. Для отключения пускателя вручную служит кнопка SB2, при нажатии которой разрывается цепь удерживания электромагнита, и якорь его, отпадая, размыкает силовые контакты YAJ: При понижении напряжения питающей сети электромагнит отпадает, и электродвигатель отключается, чем осуществляется защита минимального напряжения. После восстановления напряжения магнитный пускатель сам включиться не может — включение его должно вновь осуществляться вручную. Защита электродвигателя от перегрузки выполняется тепловыми реле КА1 и КА2. Тепловые реле настраиваются таким образом, чтобы они не срабатывали от токов, проходящих при пуске и самоэапуске электродвигателя. Схема включения цепей магнитного пускателя, приведенная на рис. 19.17, применяется для защиты неответственных
электродвигателей, подверженных технологической перегрузке. В случае, если электродвигатель не подвержен перегрузкам, из схемы исключаются контакты тепловых реле. На ответственных электродвигателях, которые не должны отключаться при снижениях напряжения, вместо кнопок управления SB1 и SB2 устанавливается однополюсный рубильник, которым производится включение и отключение электродвигателя. После восстановления напряжения магнитный пускатель вновь включается, так как рубильник S остается замкнутым.

Рис. 19.17. Схема зашиты электродвигателя напряжением г.о 500 В с магнитным пускателем

Источник