Меню

Усилители мощности класс d модули

Одноплатные усилители мощности звуковой частоты D-класса (подборка с Алиэкспресс): маленькие, но сильные!

Усилители D-класса имеют по крайней мере одно неоспоримое и очень важное преимущество: высокий КПД, достигающий 90% и более.

Такой КПД позволяет создать в малых габаритах очень мощные усилители.

Однако же, среди мировой радиолюбительской общественности не утихают споры: а не потерялось ли одновременно с повышением КПД качество звука?

Некоторая потеря качества не исключена, поскольку в большинстве мощных усилителей должны стоять фильтры; а они повышают выходное сопротивление в области высоких частот и могут искажать АЧХ (подробности — по ссылке, сторонний ресурс).

И всё-таки, усилители D-класса при грамотном схемотехническом построении и достаточно высоком качестве источника питания способны дать очень высокое качество звука, достойное класса Hi-Fi.

Немного терминологии, применяемой далее:

SE (Single Ended) — обычный ШИМ-выход в усилителе D-класса;

BTL (Bridge-Tied Load) — схема с мостовым выходом (два SE-выхода в противофазе по звуковой частоте);

PBTL (Paralleled Bridge-Tied Load) — параллельное соединение выходов BTL, работающих синхронно.

Мощность усилителей в этой подборке указана согласно документации (datasheet) на применённые микросхемы; но надо сказать, что далеко не всегда номинальную мощность из них удаётся «выжать». А уж фантазии продавцов на Алиэкпресс в отношении мощности вообще не знают границ. 🙂

Цены указаны в долларах (т.к. цены в рублях быстро становятся недействительными) и в дальнейшем могут меняться в любую сторону. Но на распродаже 11.11 они, скорее всего, на несколько процентов упадут.

Одноплатные УНЧ на основе микросхемы TPA3116D2

Микросхема TPA3116D2 работает в мостовом режиме и оказалась настолько удачной и универсальной, что если бы других микросхем усилителей класса D не существовало бы, мир не сильно обеднел бы. 🙂

Микросхема может работать в широком диапазоне питающих напряжений (4.5 — 26 В), развивает на нагрузке 4 Ом мощность до 2*50 Вт (U пит.=21 В); а также может быть сконфигурирована в одноканальном режиме (мощность 100 Вт).

На Алиэкспресс предлагается множество вариантов одноплатных усилителей на основе этой микросхемы.

Это могут быть самые простые варианты стереоусилителей (см. 1-ую ссылку выше, $6.5), а могут быть и усложнённые варианты со встроенным Bluetooth и регуляторами тембра (2-ая ссылка, $17).

Существуют и варианты с 2-3 микросхемами TPA3116 на борту, предназначенными для построения усилителей конфигурации 2.1 и выше.

Вместе с тем надо напомнить о «щедрости» китайских производителей, которые запросто могут присвоить усилителю 2*50 Вт мощность 2*120 Вт.

Одноплатные УНЧ на основе микросхемы TDA7498

Микросхема TDA7498, в отличие от предыдущей (TPA3116D2), предназначена для работы с более высокоомными нагрузками и при более высоком напряжении питания, которое может составлять 14 — 39 В.

Предельная мощность на нагрузке составляет до 2*100 Вт (U пит.=36 В, Rн=6 Ohm).

«Грабли» при применении этой микросхемы заключаются в том, что её производитель не гарантирует работоспособность при нагрузке 4 Ом (может срабатывать защита по току); рекомендуется нагрузка 6 или 8 Ом.

Тем не менее, китайские продавцы сплошь и рядом пишут, что усилитель якобы работает с нагрузкой от 4 Ом. Будьте бдительны!

На основе этой микросхемы выпускается различные варианты одноплатных усилителей, и совсем простых (первая ссылка выше, $8.6), и навороченных (с Bluetooth, воспроизведением с карты памяти и т.п., вторая ссылка, тоже $8.6).

Одноплатные УНЧ на основе микросхемы TDA7498E

Всего лишь одна буква в наименовании микросхемы, а как много она может изменить!

В отличие от своей «младшей сестры» (без суффикса), микросхема TDA7498E уже поддерживает работу с нагрузкой 4 Ом, а выходная мощность повышена до 2*160 Вт!

Омрачить эту радость может только то, что из-за полной совместимости по выводам, отдельными недобросовестными китайскими поставщиками возможна подмена, когда вместо TDA7498E на плате может оказаться обыкновенная TDA7498.

При приобретении надо тщательно изучать отзывы предыдущих покупателей, не замечал ли кто такой подмены.

Такая высокая мощность требует серьёзного теплоотвода, даже несмотря на высокий КПД. На некоторых платах уже устанавливают активное охлаждение.

На ссылках выше — два варианта плат на микросхеме TDA7498E: одна — попроще ($13.4), другая — более навороченная с конфигурацией 2.1 (Bluetooth, USB, тембры; итого $33.4).

Одноплатные УНЧ на основе микросхемы TPA3255

Микросхему TPA3255 (она же TPA3255D2) можно назвать легендарной.

Заслужила она это своими характеристиками: официальная выходная мощность (суммарная по всем каналам) заявлена на уровне 600 Вт!

Другое дело, что мне, например, не попадалось обзоров, где эта цифра подтверждалась бы. Но даже при отдаче половины мощности эта микросхема — крайне мощная.

Кроме того, возможна её гибкая конфигурация — она может работать как 4-канальная (4 канала SE), 3-канальная (2 канала SE и один канал BTL), двухканальная (2 канала BTL) и одноканальная (1 канал PBTL). Конфигурация задаётся при разводке платы и не меняется.

Читайте также:  Мотор для яхты мощность

Недостаток каналов SE — в том, что они требуют наличия на выходе разделительного электролита, что ухудшает работу на низких частотах и увеличивает габариты усилителя.

По ссылкам выше — простая конфигурация (стерео), $44; и конфигурация 2.1 (стерео SE + басовый BTL), $40.

При работе с высокой мощностью весьма рекомендуется принудительная вентиляция.

Одноплатный УНЧ на основе микросхемы TDA8954

Все ранее рассмотренные микросхемы были в той или иной степени «идеологической» копией друг друга и не предлагали ничего оригинального.

А вот микросхема TDA8954 — «не такая, как все».

Её главное отличие — в том, что она работает от двухполярного питания!

А в этом есть два «плюса».

Первый: питать микросхему не обязательно от стабилизированного источника питания, можно и от трансформатора с отводом от средней точки во вторичной обмотке.

Второй: по постоянно циркулирующим в радиолюбительских кругах слухам, схемы с двухполярным питанием в принципе дают лучшее качество звука, чем с однополярным.

Микросхема может быть сконфигурирована как двухканальная с каналами SE (2*210 Вт), либо как одноканальная BTL с мощностью 420 Вт (задаётся при разводке платы).

По ссылке можно купить плату со стереоканалами SE по цене ок. $34.5 (с учетом доставки).

Перечисленные в подборке микросхемы — самые популярные, но в природе есть и много других, ничуть не хуже.

Можно упомянуть, например, TAS5630 (2*300 Вт, Texas Instruments), TPA3118D2 (2*30 Вт, не требует теплоотвода, Texas Instruments), PAM8610 (2*10 Вт, не требует теплоотвода, Diodes Inc.).

Применение усилителей класса D позволяет не только уменьшить массу и габариты аппаратуры, но и сократить потребление энергии (что очень важно для аппаратуры на автономном питании).

В тех случаях, когда в составе платы усилителя нет темброблока, есть смысл задуматься о его приобретении или сборке.

Это позволит добавить звуку окраски на низких и высоких частотах, или, попросту говоря, исправить типовые недостатки средних и дешевых звуковых колонок.

Потребуются также и корпуса для сборки полностью всей конструкции; их тоже можно подобрать и приобрести на Алиэкспресс.

Если перечисленные в подборке одноплатные усилители у других продавцов найдутся дешевле, то тоже можно брать — товар одинаковый (но надо следить за стоимостью доставки — она не всегда бесплатная).

Источник



Новые усилители класса D на основе технологии UсD

В последние годы все большую и большую популярность приобретают усилители класса D или, как их еще называют, импульсные усилители. Некоторые производители дают им название «цифровые усилители», но оно несколько некорректно, поскольку никакого преобразования звука в двоичный код там нет. В усилителе класса D звуковой сигнал преобразуется в последовательность импульсов различной ширины в результате широтно-импульсной модуляции (ШИМ). Частота следования импульсов обычно выбирается в пределах 300-500 кГц, это оптимально для всего аудиодиапазона. Если усилитель сабвуферный и перед ним стоит задача усиливать только диапазон до 100-200 Гц, частоту переключения можно уменьшить до 50-100 кГц.

Раньше импульсные усилители были интересны только за счет своего высокого КПД (обычно более 90%) и применялись только для управления мощными электродвигателями. Этот факт был напрямую связан с отсутствием высокоскоростных мощных переключательных элементов, способных работать на высоких частотах, вследствие чего высокие нелинейные искажения были просто неизбежны. Однако сейчас многими компаниями-производителями электронных компонентов выпускаются специализированные элементы для построения усилителей класса D, способные работать на частотах вплоть до 1 МГц и выше.

Для оценки КПД усилителей различных классов рассмотрим принципы работы выходных каскадов, построенных на биполярных транзисторах.

Выходной каскад усилителя класса АВ, выполненный на биполярных транзисторах, обладает низким КПД, потому что выходные транзисторы, подобно переменным резисторам, изменяют свое активное сопротивление, тем самым управляя выходным током. В усилителе класса АВ невозможно получить размах амплитуды выходного напряжения, равный напряжению питания, поскольку даже в полностью открытом состоянии напряжение между коллектором и эмиттером Uк-э биполярного транзистора, равняется приблизительно 1-2 В.

В импульсных усилителях силовыми элементами являются мощные полевые транзисторы, у которых существует только 2 состояния — открытое и закрытое. Так как сопротивление открытого канала современных полевых транзисторов очень мало (обычно десятки мОм), следовательно, и падение напряжения на этих элементах незначительное. Меандр, проходя через выходной фильтр, преобразуется в переменный ток звуковой частоты, осциллограмма которого показана на рис. 1.

Рис. 1. Осциллограмма преобразования сигнала

Это объясняется тем, что выходной дроссель, который является неотъемлемой частью импульсного усилителя, изменяет свое реактивное сопротивление для сигнала с переменной скважностью. Вместе со скважностью, которой управляет звуковой сигнал, изменяется и ток, протекающий через нагрузку.

Читайте также:  Чем больше мощность двигателя тем лучше

Значительная часть потерь происходит на фронтах в момент переключения полевых транзисторов, поэтому, снизив частоту преобразования, можно уменьшить количество фронтов за единицу времени и, как следствие, немного увеличить КПД. Именно по этой причине в сабвуферных усилителях класса D частоту переключения понижают вплоть до 50 кГц.

Как упоминалось выше, современные полевые транзисторы способны переключаться с высокой скоростью, тем самым позволяя разработчику значительно увеличить частоту преобразования и, следовательно, уменьшить габаритные размеры выходного дросселя. В результате сопротивление обмотки постоянному току (Rdc) будет тоже гораздо меньше, следовательно, немного уменьшится нагрев провода обмотки.

Усилители класса D делятся на 3 основных типа:

1) Усилители с внешним генератором пилообразного напряжения (рис. 2);

2) Самоосцилирующие усилители (рис. 3);

Рис. 3. Структурная схема самоосциллирующего усилителя класса D

3) Усилители на основе микроконтроллеров со встроенным АЦП.

Усилители с внешним генератором пилообразного напряжения наиболее просты в изготовлении и наладке, обладают меньшими требованиями к топологии печатной платы и компонентам по сравнению с усилителями самоосциллирующего типа. Именно эти усилители в настоящее время являются самыми распространенными среди серийных моделей как сабвуферных усилителей, входящих в состав автомобильных акустических систем, так и широкополосных профессиональных, эстрадных усилителей. Самоосциллирующие усилители работают как автогенераторы, в них колебательный процесс проходит и поддерживается за счет использования положительной обратной связи. Этот тип усилителей отличается более высокими требованиями к топологии печатной платы, но при тонком подходе к этому вопросу качество звуковоспроизведения данного типа усилителей значительно превосходит остальные.

В свою очередь, самоосциллирующие усилители делятся на 2 подкласса, в которых обратная связь организована до выходного фильтра и после него. В схемах, где обратная связь организована до выходного фильтра, она исправляет только нелинейности мощного компаратора, а выходной фильтр находится вне контроля.

Такие усилители имеют не очень ровную АЧХ, и выходной импеданс у них сильно растет вместе с частотой.

Усилители, у которых обратная связь берется только после выходного фильтра, лишены всех этих недостатков. Отрицательная обратная связь организована после фильтра и максимально возможно исправляет все нелинейности, а колебательный процесс начинается за счет того, что на определенной частоте сдвиг фазы составляет 180 градусов, то есть на этой частоте ОС становится положительной, и усилитель работает как генератор.

Фаза сдвигается благодаря задержкам сигнала, которые происходят в самом компараторе, выходном фильтре и специальной фазосдвигающей RC-цепочке.

Такой принцип работы самоосциллирующих усилителей класса D имеет название UcD, он был разработан и запатентован компанией NXP Semiconductor (ранее — Philips Semiconductor) в 2005 году. Структурная схема такого усилителя представлена на рис. 4.

Рис. 4. Структурная схема усилителя класса D, работающего по принципу UcD

Он сочетает в себе гениальную простоту и высочайшее качество звука. Оригинальные модули UcD, которые производит компания Hypex (рис. 5), имеют совсем неглубокую обратную связь (около 30 дБ) по сравнению с усилителями класса АБ (у которых глубина ОС — в районе 60 дБ), и умеренно низкий уровень искажений, порядка 0,03%.

Рис. 5. Оригинальный модуль усилителя UcD компании Hypex

Отечественная промышленность также начинает разработки аудиотехники на основе усилителей класса D, и на данный момент достигнуты весьма ощутимые результаты. Одним из разработчиков усилителей мощности с использованием технологии UcD является Сергей Кузнецов.

Он любезно поделился с нами своими наработками в этой области:

«Любой разработчик аудиотехники скажет, что усилители с неглубокой обратной связью, или же вообще без ОС, звучат более реалистично и приятно, чем усилители, охваченные глубокой ОС, несмотря на лучшие значения параметров последних. Это — субъективная оценка, понятно, что качество усилителя оценивается не только цифрами, указанными в технической документации. Прежде всего, усилитель нужно слушать. Оригинальные модули UcD, которые производит Hypex, имеют совсем неглубокую обратную связь (около 30 дБ) по сравнению с усилителями класса АB (у которых глубина ОС в районе 60 дБ), и умеренно низкий уровень искажений, порядка 0,03%. Я не стал экспериментировать с номиналами ОС, потому что у меня нет оснований не доверять разработчикам Hypex. Разработанный мной усилитель с использованием технологии UcD (рис. 6) способен работать на динамическую головку сопротивлением 4 и 8 Ом, отдавая при этом в нагрузку максимальную музыкальную мощность до 400 Вт.

Рис. 6. Усилитель UcD, разработанный Сергеем Кузнецовым

На входе стоит фильтр ВЧ на уровне 20 кГц, чтобы высокочастотный шум не проникал на вход.

Читайте также:  Какие бывают сетевые фильтры по мощности

У усилителей класса D, даже у тех, у которых ОС организована до фильтра, очень низкий выходной импеданс, особенно в области низких частот, у UcD же он практически одинаково низкий во всей аудиополосе, кроме того, обратная связь компенсирует Rdc дросселя, то есть коэффициент демпфирования получается очень высоким. Это особенно важно при использовании усилителя с мощными сабвуферами: какой бы ни был динамик, UcD сможет отлично его контролировать, обеспечивая тем самым четкий бас без гудения. (Причиной гудения является как раз плохой коэффициент демпфирования большинства серийных сабвуферных усилителей). Правильно спроектированный UcD будет обладать качеством, соизмеримым с качеством усилителей, использующихся в студийных мониторах. Такое качество и точность передачи звукового сигнала достигается за счет применения неглубокой ОС, а для того, чтобы сохранить низкий уровень искажений, нет необходимости подбирать все транзисторы в пары по параметрам, так как все они работают в ключевом режиме.

Как известно, на качество звука влияет количество активных компонентов, которые стоят на пути прохождения сигнала. В усилителях АВ приходится применять разнообразные цепи коррекции с малошумящими дорогостоящими транзисторами и операционными усилителями, в UcD же необходимость в этом также отпадает по уже названной причине — ключевой режим работы всех активных компонентов. Уровень шума и характер звучания практически полностью определяются входным операционным усилителем, который легко можно менять и выбрать наиболее понравившийся. Еще один серьезный плюс усилителей класса D — это отсутствие тепловых искажений.

Рассмотрим, как работают выходные транзисторы в линейном усилителе. При подаче на вход усилителя сигнала звуковой частоты выходные транзисторы начинают периодически плавно открываться и закрываться, то есть проходящий через каждый транзистор ток пульсирует практически от максимального значения выходного тока до тока покоя. При этом также меняется значение напряжения коллектор-эмиттер. Вместе с напряжением и током меняется и рассеиваемая мощность выходных транзисторов, причем изменяться она может в очень широких диапазонах. Это вызывает пульсацию температуры кристаллов. Несмотря на то, что транзистор установлен на радиатор, пульсации температуры нельзя избежать, так как моментально отвести тепло от кристалла транзистора невозможно. Как известно, при изменении температуры транзистора, все его характеристики будут также варьироваться. Получается, что вместе со звуковой синусоидой параметры выходных транзисторов будут также варьировать, и, несомненно, это отразится на звуке не лучшим образом. Конечно, влияние не так велико, однако разницу при воспроизведении низких частот между усилителем класса АВ и класса D слышат все, даже те, кто не обладает музыкальным слухом.»

В связи с появлением усилителей класса D, выполненных по технологии UcD, перспективы у данного класса усилителей существенно повысились. Теперь они могут применяться для построения не только бытовых аудиосистем, но и профессиональной техники, например концертного и студийного оборудования, трансляционных усилителей, профессионального оборудования для кинозалов и развлекательных комплексов, автомобильных акустических систем. Главными факторами успешной конкуренции усилителей UcD даже с топовыми моделями классов А и АВ стали высочайшее качество звукопередачи и высокий КПД, достигающий 97%, а также низкая себестоимость.

Принципиальная схема UcD-усилителя разработки Сергея Кузнецова представлена на рис. 7, а перечень транзисторов NXP, использованных в разработке — в таблицах 1 и 2.

Рис. 7. Принципиальная схема усилителя UcD конструкции Сергея Кузнецова

Таблица 1. Биполярные транзисторы к принципиальной схеме рис. 7

Наименование U, CE U, BE I, C P, tot Корпус
BCP56-16 80 В 5 В 1 А 1,33 Вт SOT-223
BCP53-16 -80 В -5 В -1 А 1,33 Вт SOT-223
BC807 -45 В -5В -0,5 А 0,25 Вт SOT-23
BC846 65 В 6 В 0,1 А 0,25 Вт SOT-23

Таблица 2. Выходной полевой MOSFET к принципиальной схеме рис. 7

Наименование U, DS R, DS on I, D Q, QD Корпус
PHP28NQ15 150 В 65 мОм 28,5 А 7,5 nC TO-220AB

По вопросам получения технической информации обращайтесь в компанию КОМПЭЛ.
Е-mail: theory.vesti@compel.ru.

Новые микроконтроллеры с ядром ARM7

Компания NXP анонсировала новый микроконтроллер LPC2478, являющийся единственным выпускаемым микроконтроллером с ядром ARM7 TM со встроенной флэш-памятью и интегрированной поддержкой ЖКИ. Вариант без флэш-памяти имеет обозначение LPC2470. Особенностью новых микроконтроллеров является наличие двух высокоскоростных шин ядра ARM (AHB), обеспечивающих параллельное функционирование большого набора периферийных устройств с высокой пропускной способностью. В их числе интерфейс ЖКИ, шина 10/100 Ethernet, устройство OTG/хост-шины USB и два CAN-интерфейса.

Значительно сокращая стоимость, площадь и потребляемую мощность, новые микроконтроллеры компании NXP прекрасно подходят для применения в промышленных, бытовых, торговых и медицинских устройствах, использующих ЖК-панели и требующих подключения к локальной сети или сети Интернет.

Источник