Меню

В чем заключается термическое действие тока короткого замыкания

Термическое действие токов короткого замыкания

Для каждого элемента электроустановки нормами устанавливаются допустимые температуры нагрева, выше которых он не должен нагреваться в заданных условиях работы. При этом различают два режима:

· длительный нагрев током нормального режима;

· кратковременный режим нагрева током к.з.

Поскольку режим к.з. ограничивается по времени (не более трех секунд), допускается более высокая температура нагрева, чем в длительном режиме.

Температура нагрева проводника складывается из двух составляющих:

где — температура окружающей среды; перепад температуры нагретого проводника и окружающей среды.

В длительном режиме нагрева изменение температуры происходит в соответствии с уравнением

где — установившееся значение перепада температуры ( ); Тн — постоянная нагрева проводника.

Рис. 34. Кривая нагрева проводника

Для длительного режима работы условием нормальной работы является:

В режиме короткого замыкания токи возрастают в 10-20 раз, при этом нагрев возрастает в 100-400 раз, а теплоотдача изменяется незначительно. Поэтому процесс можно считать адиабатическим, когда все тепло идет на нагрев проводника без отдачи в окружающую среду.

Количество тепла, выделенного в проводнике в режиме к.з., пропорционально импульсу квадратичного тока к.з. (тепловому импульсу):

где — действующее значение тока в момент к.з.

В практических расчетах определяют упрощенно:

Время действия тока к.з. ( ) складывается из времени действия основной релейной защиты ( ) и полного времени отключения выключателя :

При выборе электрических аппаратов используются указанные заводом-изготовителем данные о гарантированных значениях времени и среднеквадратичного тока , которые выдерживаются аппаратом без повреждений. Условие проверки термической стойкости:

При выборе проводников условием проверки на термическую стойкость является

Для проверки необходимо определить температуру ( ) проводника в конце режима к.з., что достаточно сложно. Для упрощения расчетов по проверке термической стойкости проводников можно использовать понятие минимального сечения проводника:

где — коэффициент, который приводится для проводов, шин и кабелей в справочной литературе.

Проводник термически стоек к току короткого замыкания, если

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Электродинамическое и термическое действие токов КЗ. Ограничение токов КЗ.

В электрических установках могут возникать различные виды коротких замыканий , которые сопровождаются резким увеличением тока.

Все установленное электрооборудование в системах электроснабжения должно быть устойчивым к токам короткого замыкания и выбираются с учетом этих токов.

Электродинамические действия токов К.З.

При к.з. в результате возникновения наибольшего ударного тока к.з. в шинах и других конструкциях распред устройств возникают электродинамические усилия, которые в свою очередь создают изгибающий момент, а следовательно, механическое напряжение в металле, которое должно быть меньше допустимого напряжения для данного металла.

Электродинамическое действие ударного тока к.з. при трехфазном к.з. определяется наибольшей силой F( 3 ) (кГ), действующей на шину средней фазы при условии расположения проводников в одной плоскости:

Где l,a-длинна и расстояние между токоведущими частями (см)

–коэффициент, учитывающий несовпадение и неодинаковое значение ударного тока в фазах.

Рассматривая шину как равномерно нагруженную многопролетную балку, изгибающий момент, создаваемый ударным током :

Читайте также:  Что такое индуцирование тока

Термическое действие токов К.З.

Токоведущие части в том числе и кабели при к.з. могут нагреваться до температуры значительно большей, чем при нормальном режиме. Что бы токоведущие части были термически устойчивы к токам к.з., величина расчетной температуры tрасч должна быть ниже температуры допустимой tдоп для данного материала.

За действительное время протекания тока к.з. принимается суммарное время действия защиты tз и выключающей аппаратуры tв

При проверки токоведущих частей на термич. Устойчивость обычно пользуются понятием приведенного времени Tпр, в течение которого установившийся ток к.з. I∞ выделяется то же кол.во тепла что и изменяющийся во времени ток к.з. за действительное время t.

Приведенное время определяется составл. времени апериодической слагающих тока к.з. :

Величину tпр.п при действительном времени t 5 сек величина tпр.п= tпр.5+(t-5) где tпр.5-приведенное время для t=5сек. Приведенное время апериодической слагающей

При действительном времени t 2

Tпр — приведенное время действия тока к.з. (сек)

Ограничение токов К.з.

При питании электроустановок пром. Предприятий от мощных энергосистем приходится значительно повышать сечение токоведущих частей и габариты аппаратов, выбирать их по условиям как нормального так и динамич. и термич. устойчивости.

Наиболее распростр. Способами ограничения токов к.з. являются:

А) раздельная работа трансформаторов и пит. Линий

Б) включение в сеть доп. Сопротивлений-реакторов

В) применение трансформаторов с защищенной обмоткой

Наиболее целесообразна и эффективна установка реакторов на линиях потребителей, подключаемых непосредственно на шины электрический станций, а так же на районных подстанциях большой мощности, питающих маломощные заводские подстанции.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник



Действие токов короткого замыкания

При возникновении КЗ общее сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются.

Протекание токов КЗ через элементы электрических установок вызывает электродинамические и тепловые воздействия.

Продолжительность КЗ составляет обычно доли секунды и, как исключение, может длиться несколько секунд. В течение этого короткого промежутка времени выделение тепла настолько велико, что температура проводников и аппаратов выходит за пределы, установленные для нормального режима. Процесс нагревания прекращается в момент автоматического отключения поврежденного участка системы, после чего происходит относительно медленное остывание.

Даже кратковременное повышение температуры проводников и контактов при КЗ может ускорить старение и разрушение изоляции, вызвать сваривание и разрушение контактов, потерю механической прочности шин и проводов, пожары и т.п. Для надежности работы электрической системы необходимо исключить такие повреждения, что достигается выбором соответствующих размеров токоведущих частей и по возможности быстрым отключением поврежденных частей. Способность аппарата и проводника противостоять кратковременному тепловому действию тока КЗ без повреждений, препятствующих дальнейшей исправной работе, называется термической стойкостью.

Читайте также:  Ток от отрицательного источника питания

Термическое действие сводится к нагреву токоведущих частей и аппаратов, по которым протекает ток КЗ. Критерием термической стойкости является конечная температура, которая ограничивается механической прочностью металлов, деформациями частей аппаратов, а также нагревостойкостью изоляции. Допустимые конечные температуры для аппаратов и проводников установлены на основании опыта. Они выше допустимых температур при нормальной работе, поскольку изменение механических свойств металлов и износ изоляции определяется не только температурой, но и продолжительностью нагревания, которая в рассматриваемых условиях мала.

При расчетах учитывают, прежде всего, начальную температуру токоведущей части, до возникновения тока КЗ и прибавляют к ней температуру перегрева в результате действия токов КЗ. Значение tнач обычно выбирается максимально возможная при максимально возможной нагрузке. Так, например, для стальных шин при tокруж = 25 ºС за наивысшую температуру принимают 70ºС.

Установлены следующие максимально допустимые температуры перегрева током КЗ:

— медные шины и провода – 300 ºС;

— алюминиевые – 200 ºС;

— стальные – 250 ºС;

— силовые кабели при напряжении до 10 кВ с медными жилами – 200 ºС;

— с алюминиевыми жилами – 150 ºС.

Токи КЗ сопровождаются значительными электродинамическими усилиями между проводниками, что может вызвать разрушение токоведущих частей и изоляции. В виду больших значений токов КЗ эти воздействия приводят к повреждению электроустановок, т.к. механическая сила взаимодействия, возникающая между двумя проводниками с током, прямопропорциональна произведению токов в проводниках и обратнопропорциональна расстоянию между ними, т.е. получается – току КЗ в квадрате. Однако она также зависит от формы и сечения проводника. В трехфазных системах наибольшей нагрузке подвергается средняя шина.

Расчетам на электродинамическую прочность подвергают кроме шинных конструкций и их изоляторов так же все виды выключателей, разъединителей и трансформаторов тока, т.е. всю аппаратуру, через которую протекает ток КЗ.

Также короткое замыкание в сети может сопровождаться прекращением питания потребителей, присоединенным к точкам, в которых произошло КЗ; нарушением нормальной работы других потребителей, подключенных к неповрежденным участкам сети, вследствие понижения напряжения на этих участках; нарушением нормального работы энергетической системы.

Поэтому электрооборудование, устанавливаемое в системах электроснабжения, должно быть устойчивым к токам КЗ и выбираться с учетом величин этих токов.

Источник

4.2. Электродинамическое действие токов короткого замыкания

Прохождение токов в проводниках приводит к возникновению между ними электродинамических (механических) усилий. Одинаковое направление токов в параллельных проводниках вызывает их притяжение, противоположное – их отталкивание. В режиме нормальной нагрузки механические силы взаимодействия незначительны, но при К3 они могут достигать значений, опасных для электрических аппаратов и ошиновок, вызвать их деформацию и даже разрушение.

Из теоретической электротехники известно, что сила взаимодействия между двумя проводниками при прохождение по ним токов i1 и i2 определяется по формуле

где i1 , i2 — мгновенные значения токов в проводниках, А; l — длина проводников, м; а — расстояние между осями проводников, м; Кф — коэффициент формы, учитывающий форму сечения и взаимное рас­положение проводников (для круглых проводников сплошного сече­ния, кольцевого сечения, шин коробчатого сечения с высотой сече­ния 0,1 м и более принимается Кф= 1 .

Читайте также:  Теорема остроградского гаусса для токов

Наибольшие механические усилия между проводниками воз­никают в режиме короткого замыкания в момент, когда ток КЗ достигает ударного значения.

Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать электродинамической стойкостью, т. е. должны выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной эксплуатации.

В зависимости от вида электрооборудования условия проверки его на электродинамическую стойкость различны. Например, за­воды-изготовители указывают гарантированный ток КЗ iдин (или imах, или iпр.скв) при котором обеспечивается электродинамичес­кая стойкость аппаратов (выключателей, разъединителей). При вы­боре их должно выполняться условие: iуд 50 кА .

Не проверяются на электродинамическую стой­кость аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере; аппараты и провод­ники, защищенные предохранителями с плавкими вставками на ток до 60 А.

4.3. Термическое действие токов короткого замыкания

При протекании по проводникам электрического тока провод­ники нагреваются. При нагреве проводника током нагрузки часть выделенной теплоты рассеивается в окружающую среду, причем степень рассеивания зависит от условий охлаждения.

При протекании тока КЗ температура проводников значительно возрастает, так как токи при КЗ резко увеличиваются, а дли­тельность КЗ мала, поэтому теплота, выделяющаяся в проводни­ке, не успевает передаться в окружающую среду и практически все идет на нагрев проводника. Нагрев проводника при КЗ может достигать опасных значений, приводя к плавлению или обугли­ванию изоляции, к деформации и плавлению токоведущих час­тей и т.п.

Критерием термической стойкости проводников являются до­пустимые температуры нагрева их токами КЗ.

Проводник или аппарат считается термически стойким, если его температура нагрева в процессе КЗ не превышает допустимых величин. Условие термической стойкости в общем случае выгля­дит так, °С:

где θº кон – конечное значение температуры проводника в режиме к.з.

Количественную оценку степени термического воздействия тока КЗ на проводники и электрические аппараты рекомендуется производить с помощью интеграла Джоуля

где iкt, — полный ток КЗ в произвольный момент времени t, А; tоткл — расчетная продолжительность КЗ, с.

Заводы-изготовители в каталогах приводят значения гаранти­рованного среднеквадратичного тока термической стойкости (/тер, кА) и допустимого времени его протекания (tтер, с) для элек­трических аппаратов (выключателей, разъединителей, трансфор­маторов тока и др.).

В этом случае условие термической стойкости аппаратов в ре­жиме КЗ выглядит так, кА 2 -с,

При проверке термической стойкости проводника, имеющего стандартное сечение q станд, мм 2 , должно быть выполнено условие

где q min– минимальное сечение проводника

Источник