Меню

В каких условиях было замечено влияние электрического тока

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Читайте также:  Резонанс токов это определение

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Источник

В каких условиях было замечено влияние электрического тока

Еще задолго до Фарадея было известно, что молния может намагничивать и размагничивать стальные предметы. Например, в июле 1681 года молния ударила в корабль. Кроме обычных повреждений, причиненных ею, было замечено, что все три корабельных компаса испортились: два — размагнитились, у третьего северный конец стрелки стал показывать юг.
Однажды молния ударила в лавку торговца металлическими изделиями и разбила ящик, в котором лежали ножи и вилки. Некоторые ножи и вилки оплавились, другие оказались намагниченными.
Следовательно, электрический разряд способен придавать стали магнитные свойства и отнимать их.
Несколько важных наблюдений сделали ученые, искавшие связь между магнитными и электрическими явлениями. Один из них — датский физик Эрстед заметил, что электрический ток влияет на магнитную стрелку. Эрстед натянул провод от батареи в направлении с севера на юг. Под проводом он положил компас и пропустил по проводу ток. Стрелка компаса немедленно отклонилась в сторону.
Эрстед записал свое наблюдение: «гальваническое электричество, идущее с севера на юг над свободно подвешенной магнитной иглой, отклоняет ее северный конец к востоку, а, проходя в том же направлении под иглой, отклоняет ее к западу».
Известие об этом открытии Эрстед опубликовал 21 июля 1820 года.
Два месяца спустя — 25 сентября 1820 года — французский ученый Араго намотал на стеклянную трубочку несколько витков проволоки и положил в трубочку стальную иглу.
Когда по проволоке пропустили сильный электрический ток, игла намагнитилась.
Одновременно с Араго другой французский ученый — Ампер показал, что электрический ток, текущий по проводам, обладает магнитными свойствами. Он изобрел особый прибор, устройство которого показано на рис. 21: два прочных проводника разной длины изогнуты в виде буквы Г и укреплены вертикально. В верхней части этих Г-образных стоек сделаны чашечки. Обе стойки укреплены в приборе так, чтобы чашечки находились одна над другой.

В чашечки Ампер налил ртуть и опустил в них иголки, служившие опорой для проволочной четырехугольной рамки. Ртуть обеспечивала надежный контакт, а на иголках рамка могла вращаться очень легко, почти без всякого трения.
Перед опытом рамка была повернута так, чтобы один ее край находился против стойки, соединенной с плюсом батареи. Как только Ампер включил ток, рамка тотчас повернулась. Ее край отодвинулся от стойки, присоединенной к плюсу батареи, и приблизился к стойке, соединенной с минусом батареи. Сколько Ампер ни поворачивал рамку, она неизменно и упорно возвращалась к стойке, соединенной с минусом батареи.
Ампер установил, что электрический ток обладает магнитными свойствами: рамка, по которой течет ток, становится как бы магнитом. Токи, текущие в одном направлении, взаимно притягиваются, а токи, текущие в противоположных направлениях, отталкиваются.
Эрстед, Араго и Ампер неопровержимо доказали существование связи между магнитными и электрическими явлениями.
Фарадей же был убежден в большем. Он считал, что электричество и магнетизм,— как орел и решка на монете,— две стороны одного и того же явления. А чтобы доказать это — требовалось «превратить электричество в магнетизм и магнетизм в электричество». Так и было записано в 1821 году в дневнике Фарадея.

Через неудачи к победе

Вот как Фарадей выполнил свою задачу. Он намотал на деревянный барабан кусок медной проволоки длиной около 8 метров; чтобы витки не соприкасались между собой, Фарадей изолировал их тонким шнурком, который он наматывал вместе с проволокой (изолированных проводников тогда делать не умели).
Первый слой своей катушки ученый обернул коленкоровой лентой и поверх нее стал наматывать второй слой. Надежно изолировав второй слой, Фарадей намотал третий. Так была изготовлена проволочная катушка из 12 слоев, изолированных один от другого.
Первый, третий, пятый. — все нечетные слои Фарадей соединил последовательно, и они составили одну общую катушку. Точно так же были соединены вторая, четвертая, шестая — все четные слои обмотки. В результате у Фарадея получились как бы две катушки, намотанные одна внутри другой и надежно изолированные друг от друга. Концы проводов от одной катушки были присоединены к чувствительному гальванометру, а концы другой катушки — к батарее.
Из опытов Ампера Фарадей знал, что наибольшим магнитным действием обладает проводник, свернутый спиралью или намотанный катушкой. Поэтому он предполагал, что ток, пройдя по одной катушке, окажет свое действие на другую, причем настолько сильное, что в ней возникнет ток, который отклонит стрелку гальванометра.
Присоединив катушку к батарее, Фарадей посмотрел на стрелку гальванометра, она стояла на нуле.
Ток шел по одной катушке и на другую катушку никакого влияния не оказывал (рис. 22).

Фарадей повторял опыт несколько раз, менял концы проводов у гальванометра и батарей. Все было безрезультатно.
Ожидания Фарадея не оправдались.
Ученого, который слепо преклоняется перед опытом, эта неудача заставила бы бросить начатую работу. Опыт не удается — ничего не поделаешь! Но Фарадей не принадлежал к таким ученым. «Если опыт не удался,— рассуждал Фарадей,— значит я не сумел его поставить. Ток должен влиять! Ток в одной катушке должен вызвать ответный ток во второй катушке!»
Фарадей упрямо продолжал опыты, кропотливо отыскивая причину неудач. Он продумывал каждую мелочь, каждое свое движение. На опыты ушло несколько лет настойчивого труда. Уже потеряв надежду на успех, Фарадей случайно обратил внимание на то, что он сначала присоединяет провода к батарее, а потом смотрит на гальванометр!
Оплошность!
Фарадей прикрутил провод катушки к одному полюсу батареи, поставил гальванометр так, чтобы можно было одновременно и присоединить второй провод и видеть стрелку гальванометра. Не сводя глаз со стрелки, Фарадей коснулся проводом полюса батареи. В момент соприкосновения стрелка гальванометра едва заметно вздрогнула.
Первый успех!
Фарадей коренным образом изменил свой прибор. Он намотал две медные изолированные спирали не на деревянный цилиндр, а на кольцо, сваренное из мягкого железа. Одна спираль охватывала правую половину кольца, вторая — левую. Между спиралями оставались небольшие промежутки железа. Иначе говоря, он сделал два электромагнита, для которых железное кольцо служило общим сердечником.
Концы проволок от одной спирали Фарадей прикрепил к гальванометру, затем, внимательно глядя на прибор, он подключил батарею ко второй спирали. Стрелка гальванометра не только дрогнула, она прыгнула, заметалась из стороны в сторону, далеко отлегая каждый раз от нуля. Стрелка как бы повторяла движения концов проводника, которые Фарадей держал в руках, и успокоилась только тогда, когда ученый поплотнее скрутил провода.
Это была долгожданная победа — плод беспримерного терпения, настойчивости и глубокого убеждения в правоте своей идеи.
После работ Ломоносова и Петрова открытие Фарадея было крупнейшим успехом науки об электричестве.
Единство магнитных и электрических явлений стало очевидным.
Явление, открытое Фарадеем, получило название электромагнитной индукции, то есть электромагнитного наведения или влияния.

Магнитное поле электрического тока

Опыт с магнитом и железными опилками известен с давних пор: магнит прикрывают бумажкой, а на бумагу насыпают железные опилки, и они, падая на бумагу, ложатся не бесформенной грудой, а собираются над полюсами магнита, составляя фигуру, слегка напоминающую двух многоногих пауков.
Опилки размещаются между полюсами и вокруг них по каким-то дорожкам. Магнитные силы заставляют частички металла сцепляться, укладываться вдоль магнитных «дорожек» цепочками, образуя симметричные узоры, состоящие из отдельных, правильно изогнутых линий (рис. 23).

Если передвигать магнит под бумажкой с места на место, то и опилки будут перекатываться вслед за ним и располагаться в прежнем порядке вдоль дугообразных линий, окружающих полюсы магнита.
Эти дорожки-линии, по которым выстраиваются железные опилки, указывают направления, по которым действует магнитная сила. Узор, составленный из опилок, дает наглядное представление о расположении магнитных силовых линий и доказывает, что магнит окружен магнитным полем, подобно тому, как электрический заряд окружен электрическим полем.
Магнитное поле представляет собой как бы продолжение магнита, его невидимую, но совершенно реальную материальную «оболочку». Если к северному полюсу магнита приближать северный полюс другого магнита, то сопротивление магнитных полей становится ощутимым — они пружинят, отталкивают, мешают соприкосновению одноименных полюсов.
Фарадей обнаружил, что не только природные магниты, но и каждый отрезок провода, по которому движутся электрические за ряды, окружен со всех сторон кольцевыми силовыми линиями магнитного поля. Ученый доказал, что электрический ток всегда порождает магнитное поле вокруг проводника, по которому течет.
В существовании такого поля можно убедиться на опыте: проколоть кусок плотной бумаги иглой, продеть сквозь прокол провод и пропустить по нему сильный электрический ток (рис. 24).

Если в это время сыпать на бумагу мелкие железные опилки, то они улягутся вокруг провода правильными концентрическими кольцами.
Теперь становится понятным опыт Эрстеда — магнитная стрелка под проводом, по которому бежит ток, отклоняется в сторону, потому что на нее действует магнитное поле электрического тока.
Магнитные свойства тока можно показать и более эффектным способом. Если к свободно подвешенному проводнику, по которому течет постоянный ток, поднести подковообразный магнит, проводник будет либо втягиваться в подкову, либо выталкиваться из нее, в зависимости от направления тока и положения полюсов магнита (рис. 25).

Открытие магнитного поля вокруг тока навело Фарадея на новую мысль.
Постоянный ток, текущий по проводу, хотя и окружен магнитным полем, но никакого влияния на соседний провод не оказывает. Индуктивного тока в нем не образуется. Он возникает только тогда, когда ток включают или выключают, то есть когда магнитное поле вокруг проводника либо разрастается, либо спадает. Следовательно, индуктивный ток порождается только изменяющимся магнитным полем.
При этом, когда в первичную обмотку включают ток, то во вторичной обмотке возникает «наведенный» индуктивный ток, он всегда течет навстречу току в первичной обмотке.
При размыкании — наоборот: во вторичной обмотке появляется индуктивный ток, текущий в том же самом направлении, что и в первичной обмотке. Фарадей доказал, что «наведенный», индуктивный ток вторичной обмотки, в свою очередь, тоже влияет на первичную обмотку, он тоже вызывает в ней индуктивный ток. Подобное же явление наблюдается и в том случае, если для опыта возьмем только одну катушку.
Как только присоединим ее к полюсам батареи, по проводу катушки пойдет ток и в ней возникнет магнитное поле, усиливающееся вместе с током.
Усиление магнитного поля внутри катушки должно было бы индуктировать в ней же самой «встречный» ток, то есть противоположного направления. Однако по одному проводу ток одновременно в двух противоположных направлениях течь не может, и индукция будет лишь ослаблять включаемый ток. Значит, при включении тока возникающее магнитное поле замедляет нарастание его. Включенный ток достигает своей наибольшей силы не сразу, а постепенно.
Такое явление — влияние изменений силы тока в проводнике на самого себя — называется самоиндукцией. Самоиндукция имеет большое сходство с инерцией. Инерция препятствует мгновенному изменению скорости тела, а самоиндукция замедляет всякое изменение силы тока.
Особенно сильно проявляется самоиндукция у катушек с железными сердечниками. Когда включают большой электромагнит, ток в нем нарастает очень медленно — в течение нескольких секунд, и поэтому при включении в рубильнике проскакивает совсем маленькая искра, а то и вовсе ее не бывает. Зато когда выключают большой электромагнит, проскакивает сильная яркая искра, так как ток, поддерживаемый самоиндукцией, продолжает идти даже через воздушный промежуток, образующийся при разъединении контактов рубильника (рис. 26).

Явление самоиндукции особенно заметно, когда пропускают переменный ток по катушке с железным сердечником. При переменном токе движение зарядов происходит то в одну, то в другую сторону. Ток последовательно сначала нарастает, потом убывает, меняет направление и нарастает в другом направлении, вновь убывает, опять меняет направление и т. д. Он, а следовательно, и образуемое им магнитное ноле все время меняются, а индуктивное действие поля все время мешает этим изменениям. Оно ослабляет ток.
Если включить в цепь лампочки накаливания, питаемой переменным током, катушку с железным сердечником, то она настолько ослабит ток, что лампочка почти потухнет. Если же сердечник вынуть, магнитное поле ослабеет, индуктивное действие его уменьшится, ток усилится и лампочка загорится (рис. 27).

Читайте также:  Особенности протекания электрического тока в металлах

Источник



Воздействие электрического тока на организм человека

Воздействие электрического тока на организм человека

Первые упоминания об электричестве, относятся к IV веку до нашей эры в трудах греческого философа Аристотеля, а в V веке д. н. э., ученый Фалес Милетский упоминал об этом явление в своих трудах. В дальнейшем, вплоть до 17 века в истории человечества не зафиксированы упоминания об электричестве. В конце 18-го века впервые упоминается о влиянии электрического тока на человеческий организм, но в то время ученые еще мало знали о том какую опасность представляет ток для человека.

  1. Основные понятия
  2. Характер и последствия воздействия на человека
  3. Типы поражения электрическим током
  4. Виды воздействия электрического тока на организм человека
  5. Основные виды поражения в результате воздействия электрического тока
  6. Основные причины поражения электрическим током

Основные понятия

Электрический удар – возбуждение живых тканей организма протекающим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц.

image 4

Формула 1 – Расчет силы тока.

Как мы знаем, по степени электропроводимости все вещества делятся на 3 вида (Рисунок 1)

image 15

Рисунок 1 – Типы веществ по электропроводности

Человеческое тело довольно хорошо проводит электрический ток, а ток проходя через наш организм при превышении определенно его значения способен вызывать различные неприятные последствия, вплоть до летального исхода. Величина тока проходящего через тело попавшего под напряжение, зависит в первую очередь от величин напряжения и сопротивления организма. Сопротивление организма складывается из внутреннего – внутренние ткани, сосуды, и внешнего – кожа.

Внутреннее сопротивление у всех людей относительно мало, и составляет примерно 1000 Ом. Причем если кровь, мышечная ткань, костный и головной мозг имеют удельное сопротивление всего лишь 0,5–1 Ом/м, то сопротивление жира, костей, сухожилий и хрящей достигает 3-20 кОм/м. Сопротивление же чистой сухой кожи может достигать 100 кОм, как раз оно и определяет общее сопротивление тела человека.

Сопротивление человека зависит от многих факторов:

  • места приложения электродов;
  • площади касания (площадь соприкосновения больше – сопротивление организма меньше);
  • время прохождения тока (при увеличении длительности нахождения человека под напряжением — сопротивление организма уменьшается тк в нем нарушаются процессы терморегуляции, происходит местный нагрев внутренних органов и кожи, она выделяет пот, соответственно проводимость кожи возрастает а сопротивление уменьшается, что еще больше увеличивает нагрев…;
  • величины приложенного напряжения — с повышением напряжения уменьшается сопротивление тела в десятки раз: во-первых, за счет упомянутого выше нарушения процесса терморегуляции; во-вторых, за счет развития процессов пробоя кожи при величине приложенного напряжения выше 50 В. при этом величина сопротивления кожи уменьшается до 300 – 500 Ом.

В среднем, общее сопротивление средне-статического человека составляет 50 кОм, оно у всех людей разное, может меняться со временем, в течение жизни, и даже в течении суток и зависит не только от физического состояния кожи, но и от психоэмоционального состояния человека. Прикоснувшись к неизолированному проводнику электрического тока, человек сам становиться «элементом» электрической цепи, и ток протекая через организм оказывает на него специфическое действие.

Характер и последствия воздействия на человека

Характер и последствия опасного и вредного воздействия на человека электрического тока зависит от многих факторов:

  1. от величины и рода (переменный или постоянный) протекающего тока;
  2. продолжительности его воздействия (чем больше время действия тока на человека, тем тяжелее последствия);
  3. пути протекания;
  4. от физического и психологического состояния человека;
  5. от состояния внешней среды, например при высокой влажности воздействие электричества на организм будет сильнее.

Величина и тип протекающего тока является главным фактором от которого зависит исход его воздействия на организм человека (или животного).

По степени воздействия на человека от величины ток делится на три пороговых значения:

  • Человек начинает ощущать воздействие проходящего сквозь него переменного тока при значении 0,6 мА, прямого начиная с 5-7 мА. Эти значения называются пороговыми ощутимыми токами.
  • Следующий порог – порог неотпускающего (удерживающего) тока. Его значение для переменного тока составляет ≥10 мА, для постоянного ≥50 мА.
  • Третье пороговое значение – фибрилляционный ток. Это значение переменного тока 100 мА, а постоянного 300 мА, при длительности воздействия такого тока 0,5 сек, может наступить остановка сердца или его фибрилляция.

В таблице 1 приведены различные реакции организма человека на электрический ток в зависимости от его силы и типа.

Сила тока, мА

Характер воздействия

Постоянный ток

Переменный ток 50 Гц

Начало ощущения — слабый зуд, пощипывание кожи под электродами

Ощущение тока распространяется и на запястье руки, слегка сводит руку

Начало ощущения. Впечатление нагрева кожи под электродом

Болевые ощущения усиливаются во всей кисти руки, сопровождаются судорогами. Руки, как правило, можно оторвать от электродов

Усиление ощущения нагрева

Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов

Усиление ощущения нагрева

Едва переносимые боли во всей руке. Руки невозможно оторвать от электродов.

Еще большее усиление ощущения нагрева кожи.

Руки парализуются мгновенно, оторваться от электродов невозможно. Сильные боли, дыхание затруднено

Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц

Очень сильная боль в руках и груди. Дыхание крайне затруднено. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания

Ощущение очень сильного поверхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. Затруднение дыхания. Руки невозможно оторвать от электродов из-за сильных болей при нарушении контакта

Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца

Паралич дыхания при длительном протекании тока

Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич сердца

Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич дыхания

То же действие за меньшее время

Дыхание парализуется немедленно — через доли секунды. Фибрилляция сердца, как правило, не наступает; возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожоги, разрушения тканей

Как видно из таблицы 1, переменный ток более опасен чем постоянный. Тем не менее, даже небольшой, ниже порога ощущения постоянный ток, дает сильные удары способные вызвать судороги мышц. А при значении напряжения выше 500 В уже опаснее постоянный ток так как он обладает большой «липучестью» и от него практически невозможно самостоятельно освободиться.

В то же время, хотя переменный ток считается более опасным для человека, но это касается в основном частоты 50 Гц. С увеличением частоты, даже с учетом что сопротивление организма падает и ток текущий через него увеличивается – опасность поражения снижается электротоком и полностью исчезает при частоте 450 — 500 гГц, т.к. при высокой частоте возникает так называемый «skin» эффект – ток идет по поверхности организма, те по коже, и не может поразить человека. Но с токами такой частоты мы практически не сталкиваемся ни в быту, ни на производстве, в отличие от 50 герцового переменного напряжения, которое является стандартом в электросетях России.

Типы поражения электрическим током

В зависимости от того, какой наступает исход от электроудара, выделяют 5 типов:

  1. судорожные сокращения мышц, человек находится в сознании;
  2. судорожные сокращения мышц, человек без сознания, дыхание и работа сердца присутствуют;
  3. отсутствие дыхания с нарушением работы сердца;
  4. электрический шок, сильное расстройство дыхания, расстройство функционирования кровеносной и нервной системы, наступление глубокой депрессии которая может длиться от нескольких десятков минут до нескольких суток и в конечном итоге наступает либо полное выздоровление, либо биологическая смерть;
  5. клиническая смерть, отсутствует дыхания, остановка сердца. Ее еще называют мнимой смертью, длится 6-8 минут, является переходным состоянием от жизни к смерти. По прошествии указанного времени, если не проводить реанимационные мероприятия – наступает биологическая смерть.

Также, большое значение имеет и путь, по которому проходит ток через организм т.е. какими частями тела человек касается токопроводящей части. Чаще всего люди «включаются» в электрическую цепь таким образом, что ток проходит по петлям: «рука-ноги», «рука-рука», «нога-нога», «рука-голова», «ноги-голова».

Наибо̀лее опасны петли прохождения, при которых ток проходит через самые важные жизненные органы: сердце, головной мозг, спинной мозг которые к тому же имеют наименьшее электрическое сопротивление в организме и соответственно пропускают через себя бо̀льшее значение силы тока. Отсюда напрашиваются очевидные выводы что наиболее опасные петли «рука-рака» и пути проходящие через голову, а путь «нога-нога» наименее опасный, но тем не менее это не так, так как при этом возникает шаговое напряжение, ноги парализуются – человек оказывается в лежачем состояние и поражение током наносится всему организму.

Есть два варианта подключения организма к электрической цепи:

  1. двухфазное – человек одновременно прикасается частями тела к двум фазам (рис 2),
  2. однофазное – прикосновение к фазе и нулевой точке (рис 3).

image 16

Рисунок 2 — Схема двухфазного включения человека в электрическую сеть

Где, а – сеть с изолированной нейтралью; б – сеть с глухозаземленной нейтралью.

Двухфазное подключение самое опасное, так как в этом варианте ток зависит только от напряжения и сопротивления человека (формула 1) и будет иметь максимальное значение чем при однофазном подключение (см. рис 3).

image 17

image 18

Рисунок 3 — Схема однофазного включения человека в электрическую сеть (в)

  • а – сеть с изолированной нейтралью;
  • б – сеть с глухозаземленной нейтралью.
  • в – сеть с заземленной нейтралью

При варианте a на рисунке 3, к сопротивлению человека — Rч, добавляется сопротивление обуви Rоб, Rп – сопротивление пола, сопротивление изоляции фаз – Rиз. Те формула силы тока примет следующий вид (формула – 2).

image 5

Формула 2 – Сила тока, проходящего через человека при однофазном подключение с изолированной нейтралью.

  • Uф – фазное напряжение, В;
  • Rч – сопротивление человека (принимается равным 1000 Ом.

При расчетах принимается наименьшее сопротивление (при сильном опьянении, с мокрой или поврежденной кожей);

  • Rоб – сопротивление обуви;
  • Rп – сопротивление пола;
  • Rиз – сопротивление изоляции.

С учетом что сопротивления пола-обуви-изоляции имеют на порядки большие значения чем сопротивление человека – то и протекающий при таком варианте ток через человека гораздо слабее и менее опасный чем при 2х фазном подключении.

В аварийном режиме (см. рисунок 3б) когда одна из фаз коротит на корпус или уходит в землю, или происходит касание в месте с поврежденной изоляцией – человек может оказаться под полным линейным напряжением, ток проходящий через организм в таком случае рассчитывается по формуле 3:

image 6

Формула 3 – Сила тока, проходящего через человека при однофазном подключение в аварийном режиме.

Величина тока при однофазном подключении человека к сети с заземленной нейтралью рассчитывается по формуле 4.

image 7

Формула 4 – Сила тока, проходящего через человека при однофазном подключение с заземленной нейтралью.

Виды воздействия электрического тока на организм человека

По типу воздействия на человеческий организм электричества выделяют следующие виды:

  • Биологическое– проявляется раздражением и возбуждением тканей организма, нарушением биологических процессов, в результате чего может произойти остановка сердца и дыхания. Также ток может подавить весьма биотоки протекающие в теле человека, и тем самым вызвать серьезные расстройства в организме вплоть до его гибели.
  • Термическое– ожоги отдельных участков тела: кожи в месте соприкосновения с электродами и внутренних органов и сосудов на пути прохождения электрического тока, а также от воздействия электрической дуги или искры, образующихся при коротком замыкание или приближении человека близко к местам находящимся под высоким напряжением.
  • Электролитическое— разложение биологических жидкостей, в том числе крови, в результате чего нарушается их физико-химический состав.
  • Механическое– приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также взрывоподобного образования пара, образующегося при вскипании биологических жидкостей под действием тока. От сильных судорог могут возникать вывихи, разрыва мышц, сухожилий и даже переломы.
Читайте также:  Исходные данные для расчета токов кз

Основные виды поражения в результате воздействия электрического тока

Электрические ожоги — самая распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой. Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В. Дуговой ожог обусловлен воздействием электрической дуги, создающей высокую температуру. Дуговой ожог возникает при работе в электроустановках различных напряжений, часто является следствием случайных коротких замыканий в установках выше 1000 В и до 10 кВ или ошибочных операций персонала. Поражение возникает от перемены электрической дуги или загоревшейся от нее одежды.

Электрические знаки – пятна серого или бледно-желтого цвета, образующиеся на коже. Происходит как бы омертвление верхнего слоя пораженного участка кожи и ее затвердевание наподобие мозоли. Обычно электрические знаки безболезненны и при лечении бесследно исчезают. Знаки после поражения током появляются приблизительно у 11-20 % пострадавших.

Металлизация кожи – проникновение в нее мельчайших частиц металла при его расплавлении и разбрызгивании в случае образования электрической дуги. Металл может проникнуть в кожу также вследствие электролиза в местах соприкосновения человека с токоведущими частями. Возникает приблизительно у каждого десятого пострадавшего. С течением времени пораженный участок кожи регенерирует и приобретает нормальный вид и эластичность. Однако, при поражении глаз, лечение бывает безрезультатным и в результате травмы наступает слепота.

Электроофтальмия – воспаление наружных оболочек глаз в результате воздействия ультрафиолетового излучения электрической дуги. Характерные проявления болезни: слезотечение, частичное ослепление и светобоязнь; боль в глазах продолжается обычно несколько дней.

Механические повреждения проявляются под действием тока непроизвольным судорожным сокращением мышц. Это может привести к разрыву кожи, кровеносных сосудов и нервных тканей. Такие травмы возникают при контакте с напряжением ниже 380 В, когда человек не теряет сознания и пытается самостоятельно освободиться от источника тока.

Основные причины поражения электрическим током

Самые частые причины по которым люди оказываются под действием электротока следующие:

  • прикосновение к неизолированным токоведущим при котором возникает напряжение прикосновения;
  • появление напряжения на частях установок и машин, не находящихся под напряжением в нормальных условиях эксплуатации (корпуса, пульты и др.), что чаще всего происходит вследствие повреждения изоляции;
  • образование электрической дуги между токоведущей частью и человеком, что возможно в электрических установках напряжением 1 кВ;
  • воздействие напряжения шага (в основном при обрыве провода линии электропередачи когда происходит его замыкание на землю);
  • несогласованные и ошибочные действия персонала, отсутствие надзора за электроустановками под напряжением и ряд других организационных причин.

Предугадать электротравмы трудно, так как электричество невидимо, не имеет запаха. И хотя электротравматизм на производстве случается гораздо реже других видов травм – но находиться на первом месте по тяжести и по количеству смертельных исходов от них. К сожалению немалая часть несчастных случаев происходит из-за несоблюдения правил безопасности при работе с электроустановками, а также недостаточной квалификации работников.

Также часть смертельных исходов происходит потому что не все после электрического удара обращаются к врачу, а как было описано выше, существуют виды травм, при которых если не проводить лечение, смерть может наступить не сразу.

Очень важно в организациях проводить периодические инструктажи и объяснять работникам об опасности электрического тока, рассказывать о безопасных способах работы с электроустановками, обучать оказанию первой помощи пострадавшим.

Источник

Действия электрического тока

Мы не обладаем возможностью увидеть электроны, бегущие по проводнику. Как же тогда можно обнаружить ток в проводнике? Наличие электрического тока можно обнаружить по косвенным признакам. Так как, ток, протекая по проводнику, оказывает воздействие на него.

Вот некоторые из признаков:

  1. тепловой;
  2. химический;
  3. магнитный.

Тепловое действие тока

Благодаря такому действию тока мы можем освещать помещения с помощью ламп накаливания. А, так же, используем различные нагревательные электроприборы – конвекторы, электроплиты, утюги (рис. 1).

Используя метровый кусок никелиновой проволоки (рис. 2), можно продемонстрировать нагревание проводника при протекании по нему электрического тока. Для заметного провисания нагретой проволоки из-за теплового увеличения длины и наблюдения красноватого ее свечения будет достаточно тока в 2 — 3 Ампера.

Кусок провода нагревается, когда по нему протекает электрический ток. Чем больше ток в проводнике, тем больше он нагреется. Длина нагретого проводника увеличивается.

Подробнее о выделившемся количестве теплоты можно прочитать в статье о законе Джоуля-Ленца (ссылка).

Примечание: Нихром, никелин, константан – сплавы металлов, обладающие большим удельным сопротивлением (ссылка). Проволоки, изготовленные из таких сплавов, используются в различных нагревательных электроприборах.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

На каком электроде будет выделяться медь

Медь в растворе купороса присутствует в виде положительных ионов. Тела, имеющие разноименные заряды, притягиваются. Поэтому, ионы меди будут притягиваться к пластинке, имеющей заряд со знаком «минус». То есть, пластинке, подключенной к отрицательному выводу источника тока. Такую пластинку называют отрицательным электродом, или катодом.

Вторую пластинку, подключенную к положительному выводу батареи, называют анодом.

Примечание: Медный купорос можно найти в хозяйственном магазине. Его химическая формула \(\large CuSO_<4>\). Он используется в сельском хозяйстве для опрыскивания листвы плодовых деревьев, кустарников и овощных культур – к примеру, томатов, картофеля. Входит в составы различных растворов, применяемых в борьбе с болезнями растений и насекомыми-вредителями.

Применение химического действия тока в медицине

Химическое действие тока применяют не только в гальванопластике.

Пропускание электрического тока через растворы вызывает в них движение заряженных частиц вещества – положительных и отрицательных ионов. Человеческое тело содержит жидкости, в которых растворены некоторые вещества. А значит, в таких жидкостях присутствуют ионы.

Прикладывая специальные электроды, смоченные растворами лекарств на отдельные участки тела, и пропуская через них маленькие токи, можно вводить в организм некоторые лекарственные препараты (рис. 4).

Химическое действие тока применяют в медицине

Такое введение лекарств называют электрофорезом и используется в физиопроцедурных кабинетах поликлиник и санаториев.

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

С магнитом взаимодействует не сам медный проводник, а ток, протекающий по этому проводнику.

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Рамка с током и подковообразный магнит

Провод, обладающий достаточной жесткостью, можно изогнуть в виде плоской фигуры – прямоугольника, квадрата, окружности. Эластичные же провода навивают на жесткий каркас, изготовленный из подходящего материала – фанеры, картона, пластмассы и т. д. Такой изогнутый провод образует рамку. Проволочную рамку часто называют контуром.

Проволочная рамка, по которой течет электрический ток, может ориентироваться в магнитном поле.

Чтобы убедиться в этом, проведем такой эксперимент. Используем для него подковообразный магнит и проводник, изогнутый в виде прямоугольной рамки. Подвесим рамку к лапке штатива с помощью нити. Размеры рамки нужно выбрать так, чтобы она поместилась между полюсами магнита.

Сначала используем только подвешенную рамку (рис. 7а), без магнита. Подключим к рамке источник тока. Можно убедиться, что после подключения тока рамка продолжает висеть неподвижно. Отключим источник тока.

Теперь поместим магнит так, чтобы рамка находилась между его полюсами (рис. 7б) и, пропустим по цепи электрический ток. Легко заметить, что во время протекания тока рамка поворачивается и ориентируется по магнитному полю. А когда цепь размыкается, рамка возвращается в первоначальное положение.

Примечание: Если изменить полярность подключения источника к рамке, то она будет поворачиваться в противоположную сторону.

Замечательное свойство рамки с током поворачиваться в магнитном поле, используют в различных измерительных приборах. Один из таких приборов – гальванометр.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

Источник