Меню

Входное напряжение сигма дельта

Сигма-дельта АЦП

АЦП многотактного интегрирования имеют ряд недостатков. Во-первых, нелинейность переходной статической характеристики операционного усилителя, на котором выполняют интегратор, заметным образом сказывается на интегральной нелинейности характеристики преобразования АЦП высокого разрешения. Для уменьшения влияния этого фактора АЦП изготавливают многотактными. Например, 13-разрядный AD7550 выполняет преобразование в четыре такта. Другим недостатком этих АЦП является то обстоятельство, что интегрирование входного сигнала занимает в цикле преобразования только приблизительно третью часть. Две трети цикла преобразователь не принимает входной сигнал. Это ухудшает помехоподавляющие свойства интегрирующего АЦП. В-третьих, АЦП многотактного интегрирования должен быть снабжен довольно большим количеством внешних резисторов и конденсаторов с высококачественным диэлектриком, что значительно увеличивает место, занимаемое преобразователем на плате и, как следствие, усиливает влияние помех.

Эти недостатки во многом устранены в конструкции сигма-дельта АЦП (в ранней литературе эти преобразователи назывались АЦП с уравновешиванием или балансом зарядов). Своим названием эти преобразователи обязаны наличием в них двух блоков: сумматора (обозначение операции — S ) и интегратора (обозначение операции — D ). Один из принципов, заложенных в такого рода преобразователях, позволяющий уменьшить погрешность, вносимую шумами, а следовательно увеличить разрешающую способность — это усреднение результатов измерения на большом интервале времени.

Основные узлы АЦП — это сигма-дельта модулятор и цифровой фильтр. Схема n-разрядного сигма-дельта модулятора первого порядка приведена на рис. 14. Работа этой схемы основана на вычитании из входного сигнала Uвх(t) величины сигнала на выходе ЦАП, полученной на предыдущем такте работы схемы. Полученная разность интегрируется, а затем преобразуется в код параллельным АЦП невысокой разрядности. Последовательность кодов поступает на цифровой фильтр нижних частот.

Порядок модулятора определяется численностью интеграторов и сумматоров в его схеме. Сигма-дельта модуляторы N-го порядка содержат N сумматоров и N интеграторов и обеспечивают большее соотношение сигнал/шум при той же частоте отсчетов, чем модуляторы первого порядка. Примерами сигма-дельта модуляторов высокого порядка являются одноканальный AD7720 седьмого порядка и двухканальный ADMOD79 пятого порядка.

Наиболее широко в составе ИМС используются однобитные сигма-дельта модуляторы, в которых в качестве АЦП используется компаратор, а в качестве ЦАП — аналоговый комутатор (рис. 15). Принцип действия пояснен в табл. 2 на примере преобразования входного сигнала, равного 0,6 В, при Uоп=1 В. Пусть постоянная времени интегрирования интегратора численно равна периоду тактовых импульсов. В нулевом периоде выходное напряжение интегратора сбрасывается в нуль. На выходе ЦАП также устанавливается нулевое напряжение. Затем схема проходит через показанную в табл. 9 последовательность состояний.

Uвх=0,6 В Uвх=0 В
N такта U S , В Uи, В Uк, бит UЦАП, В N такта U S , В Uи, В Uк, бит UЦАП, В
1 0,6 0,6 1 1 1 1 1 1 1
2 -0,4 0,2 1 1 2 -1 -1
3 -0,4 -0,2 -1 3 1 1 1 1
4 1,6 1,4 1 1 4 -1 -1
5 -0,4 1,0 1 1 5 1 1 1 1
6 -0,4 0,6 1 1 6 -1 -1
7 -0,4 0,2 1 1 7 1 1 1 1
8 -0,4 -0,2 -1 8 -1 -1
9 1,6 1,4 1 1 9 1 1 1 1
10 -0,4 1,0 1 1 10 -1 -1
11 -0,4 0,6 1 1 11 1 1 1 1
12

-0,4 0,2 1 1 12 -1 -1
13 -0,4 -0,2 -1 13 1 1 1 1
14 1,6 1,4 1 1 14 -1 -1
15 -0,4 1,0 1 1 15 1 1 1 1
16 -0,4 0,6 1 1 16 -1 -1

В тактовые периоды 2 и 7 состояния системы идентичны, так как при неизменном входном сигнале Uвх=0,6 В цикл работы занимает пять тактовых периодов. Усреднение выходного сигнала ЦАП за цикл действительно дает величину напряжения 0,6 В:

(1-1+1+1+1)/5=0,6.

Для формирования выходного кода такого преобразователя необходимо каким-либо образом преобразовать последовательность бит на выходе компаратора в виде унитарного кода в последовательный или параллельный двоичный позиционный код. В простейшем случае это можно сделать с помощью двоичного счетчика. Возьмем в нашем примере 4-разрядный счетчик. Подсчет бит на выходе компаратора за 16-ти тактный цикл дает число 13. Несложно увидеть, что при Uвх=1 В на выходе компаратора всегда будет единица, что дает за цикл число 16, т.е. переполнение счетчика. Напротив, при Uвх=-1 В на выходе компаратора всегда будет нуль, что дает равное нулю содержимое счетчика в конце цикла. В случае, если Uвх=0 то, как это видно из табл. 2, результат счета за цикл составит 810 или 10002. Это значит, что выходное число АЦП представляется в смещенном коде. В рассмотренном примере верхняя граница полной шкалы составит 11112 или +710, а нижняя — 00002 или -810. При Uвх=0,6 В, как это видно из левой половины табл. 2, содержимое счетчика составит 1310 в смещенном коде, что соответствует +5. Учитывая, что +8 соответствует Uвх=1 В, найдем

5*1/8=0,625 > 0,6 В.

При использовании двоичного счетчика в качестве преобразователя потока битов, поступающих с выхода компаратора, необходимо выделять фиксированный цикл преобразования, длительность которого равна произведению Kсч fтакт. После его окончания должно производиться считывание результата, например, с помощью регистра-защелки и обнуление счетчика. В этом случае с точки зрения помехоподавляющих свойств сигма-дельта АЦП близки к АЦП многотактного интегрирования. Более эффективно с этой точки зрения применение в сигма-дельта АЦП цифровых фильтров с конечной длительностью переходных процессов.

В сигма-дельта АЦП обычно применяются цифровые фильтры с амплитудно-частотной характеристикой (АЧХ) вида (sinx/x) 3 . Передаточная функция такого фильтра в z-области определяется выражением

где М — целое число, которое задается программно и равно отношению тактовой частоты модулятора к частоте отсчетов фильтра. (Частота отсчетов — это частота, с которой обновляются данные).Например, для АЦП AD7714 это число может принимать значения от 19 до 4000. В частотной области модуль передаточной функции фильтра

На рис. 16 приведен график амплитудно-частотной характеристики цифрового фильтра, построенной согласно выражению (13) при fтакт=38,4 кГц и М=192, что дает значение частоты отсчетов, совпадающей с первой частотой режекции фильтра АЦП, fотсч=50 Гц. Сравнение этой АЧХ с АЧХ коэффициента подавления помех АЦП с двухкратным интегрированием (см. рис. 12) показывает значительно лучшие помехоподавляющие свойства сигма-дельта АЦП.

В то же время применение цифрового фильтра нижних частот в составе сигма-дельта АЦП вместо счетчика вызывает переходные процессы при изменении входного напряжения. Время установления цифровых фильтров с конечной длительностью переходных процессов, как следует из их названия, конечно и составляет для фильтра вида (sinx/x) 3 четыре периода частоты отсчетов, а при начальном обнулении фильтра — три периода. Это снижает быстродействие систем сбора данных на основе сигма-дельта АЦП. Поэтому выпускаются ИМС AD7730 и AD7731, оснащенные сложным цифровым фильтром, обеспечивающие переключение каналов со временем установления 1 мс при сохранении эффективной разрядности не ниже 13 бит (так называемый Fast-Step режим). Обычно цифровой фильтр изготавливается на том же кристалле, что и модулятор, но иногда они выпускаются в виде двух отдельных ИМС (например, AD1555 — модулятор четвертого порядка и AD1556 — цифровой фильтр).

Сравнение сигма-дельта АЦП с АЦП многотактного интегрирования показывает значительные преимущества первых. Прежде всего, линейность характеристики преобразования сигма-дельта АЦП выше, чем у АЦП многотактного интегрирования равной стоимости. Это объясняется тем, что интегратор сигма-дельта АЦП работает в значительно более узком динамическом диапазоне, и нелинейность переходной характеристики усилителя, на котором построен интегратор, сказывается значительно меньше. Емкость конденсатора интегратора у сигма-дельта АЦП значительно меньше (десятки пикофарад), так что этот конденсатор может быть изготовлен прямо на кристалле ИМС. Как следствие, сигма-дельта АЦП практически не имеет внешних элементов, что существенно сокращает площадь, занимаемую им на плате, и снижает уровень шумов. В результате, например, 24-разрядный сигма-дельта АЦП AD7714 изготавливается в виде однокристалльной ИМС в 24-выводном корпусе, потребляет 3 мВт мощности и стоит примерно 14 долларов США, а 18-разрядный АЦП восьмитактного интегрирования HI-7159 потребляет 75 мВт и стоит около 30 долларов. К тому же сигма-дельта АЦП начинает давать правильный результат через 3-4 отсчета после скачкообразного изменения входного сигнала, что при величине первой частоты режекции, равной 50 Гц, и 20-разрядном разрешении составляет 60-80 мс, а минимальное время преобразования АЦП HI-7159 для 18-разрядного разрешения и той же частоты режекции составляет 140 мс. В настоящее время ряд ведущих по аналого-цифровым ИМС фирм, такие как Analog Devices и Burr-Brown, прекратили производство АЦП многотактного интегрирования, полностью перейдя в области АЦ-преобразования высокого разрешения на сигма-дельта АЦП.

Сигма-дельта АЦП высокого разрешения имеют развитую цифровую часть, включающую микроконтроллер. Это позволяет реализовать режимы автоматической установки нуля и самокалибровки полной шкалы, хранить калибровочные коэффициенты и передавать их по запросу внешнего процессора.

Источник



Сигма-дельта АЦП

Сигма-дельта АЦП

структурная схема
Сигма-дельта АЦП состоит из двух частей: модулятор и цифровой ФНЧ.
Модулятор преобразует входное напряжение Uвх в последовательность импульсов, а ФНЧ формирует выходной код.

Uвх подается на вычитатель, где из него вычитается опорное напряжение +Uоп или -Uоп, в зависимости от того, был ли превышен порог компаратора на предыдущем шаге.
Интегратор формирует пилообразное напряжение, наклон пилы зависит от напряжения на выходе вычитателя. Как только пила пересекает уровень нуля, срабатывает компаратор и на следующем такте пила развернется в направлении нуля. Вообще говоря, уровень компаратора может быть любым, главное чтобы пила не подходила близко к уровням Uоп.
С выхода компаратора сигнал поступает на тактируемый триггер. Частота тактирования определяет время шага работы модулятора и минимальное время «1» или «0» на выходе модулятора. В конечном итоге частота определяет время преобразования.
Далее сигнал поступает на аналоговый ключ, который коммутируя +Uоп и –Uоп замыкает обратную связь.
На вход ФНЧ поступает последовательность нулей и единиц, при этом количество «1» в единицу времени пропорционально Uвх. Так при Uвх=-Uоп будут одни нули, при Uвх = +Uоп – одни единицы. Нулевому уровню Uвх будет соответствовать равное количество нулей и единиц. Остается только их сосчитать и вычесть уровень нуля равный (+Uоп – -Uоп)/2.

Для примера Uоп = 2В; Uвх = 1В.

Напряжение на выходе интегратора принимает значения:


Здесь постоянная времени интегратора такая, что за 1 такт напряжение на его выходе становится равным напряжению на его входе. При другой постоянной времени изменится крутизна пилы, но соотношение нулей и единиц останется то же.
Интерактивный сигма-дельта модулятор от Analog Devices
Возьмем 8 импульсов 0,1,1,1,0,1,1,1. Сумма равна 6. Это и будет выходной код АЦП. 6/8=0.75. А весь диапазон -2. +2 равен 4В.
4*0.75=3; И минус уровень нуля 3-2 = +1В. Максимальный код для 8 импульсов равен 8, а это уже 4 разряда, но он будет достигнут только если Uвх>=Uоп. Поэтому проще всего ограничить счет по максимальному значению счетчика и сделать его равным 7, тогда для 8 тактов хватит 3разрядов. И маскимальный код будет соответствовать 7/8 = 1.5В

Теперь как это можно сделать. На рисунке ниже схема нарисованная в Proteus.
U1:A — вычитатель;
U1:B — интегратор. Так, как интегратор инвертирующий, у вычитателя входы поменяны местами — входное напряжение вычитается из опорного.
U1:C — компаратор
U1:D — повторитель, чтобы входное сопротивление вычитателя не подсаживало Uоп. Можно и без него.
U5 — ключ. Переключает +Uоп и -Uоп.

Сверху U10 — счетчик задает 2048 тактов для счета (2^11). Код с выхода триггера подсчитывается на счетчике-таймере-индикаторе(прибор Proteus).

Графики работы для Uвх=+1В

Код формируемый счетчиком 1537

1537/2048*4-2 = 1.002В. Ошибка составила 2мВ

Можно сделать так чтобы выходной код был сразу в милливольтах. Так как счетный интервал 2048 импульсов, то соответсвующий диапазон напряжений должен быть от 0 до 2.048В. Меняем -Uоп на GND и +U на 2.048.

Частота отсчетов с выхода АЦП будет равна Fclk / 2^11 в случае использования накапливающего регистра и счетчика на 11бит, а при использовании фильтров (скользящее среднее, экспоненциальное сглаживание, КИХ, БИХ) останется равной Fclk.
В современных АЦП используют частоты тактирования десятки МГц, такая частота выдачи отсчетов избыточна (код то меняется максимум на +-1), поэтому код прореживается и на выход подается лишь каждый 2048 или 65536 или еще какой с порядком кратным двойке. Прореживание кода называют децимацией (в римской империи так называли наказание, когда отбирали каждого десятого из подразделения для казни). В результате частота отчетов на выходе будет уже Fclk/N, где N- это коэффициент децимации.

Схему можно упростить, вместо подключения GND и +Uоп запитать триггер от +Uоп. Убрать буферный каскад U1:D. Можно даже выкинуть компаратор U1:C. Уровень порога будет определяться порогом «1» триггера. Это немного снизит точность, но уже потребуется только 2ОУ. А можно ли совсем без операционников?
МОЖНО! на интегрирующей RC-цепи и компараторе.

графики (для Uвх=1.5В):

и результаты работы схемы:
Uвх=500мВ

Uвх=1000мВ

Uвх=2000мВ

Как же это работает? RC цепочка заряжается и разряжается в зависимости от предыдущего такта работы (был превышен порог или нет). Крутизна заряда-разряда меняется в зависимости от напряжения. Так вблизи нуля скорость заряда больше скорости разряда, в середине равны, вблизи +Uоп заряд медленнее разряда.

Если в МК есть компаратор, то потребуется лишь внешняя RC цепочка.
Постоянная времени должна быть выбрана в соответствии с временем такта.
Пример программы для контроллера MSP430

Источник

Читайте также:  Бесконтактного датчика напряжения ncv