ЭЛЕКТРОМАГНИТНЫЕ ВЫКЛЮЧАТЕЛИ
В отличие от масляных и воздушных выключателей электромагнитные выключатели для своей работы не требуют масла или сжатого воздуха, более просты и удобны в эксплуатации, обладают высокой надежностью и большим сроком службы.
Электромагнитный выключатель серии ВЭ на напряжение 6 и 10 кВ, номинальный ток до 3,6 кА и номинальный ток отключения до 31,5 кА показан на рис. 25, а. Три полюса выключателя смонтированы на выкатной тележке 1. При перемещении тележки влево пальцевый контакт 2 соединяется с медной шиной комплектного распределительного устройства (КРУ). Подвижный контакт 3 выключателя имеет вращательное движение относительно точки О и приводится в действие изоляционной штангой 4, соединенной с механизмом выключателя. Разрывной контакт полюса имеет главные пальцевые контакты 5 и дугогасительные 6, расположенные над главными контактами. ДУ выключателя 7 расположено над контактной системой. Для улучшения гашения малых токов выключатель имеет устройство воздушного дутья 8, которое приводится в действие тягой 9, соединенной с механизмом привода выключателя. При отключении выключателя в дутьевом устройстве создается сжатый воздух, который протекает по трубке 10 и воздействует на дугу, перемещая ее вверх и включая катушки магнитного дутья.
Рис. 25. Электромагнитный выключатель:
а — общий вид выключателя ВЭ-10; б — дугогасительное устройство
Присоединение цепей привода и сигнализации к схеме управления КРУ производится с помощью штепсельного контактного разъема 11.
Правая катушка магнитного дутья 12 соединяется с нижним выводом выключателя шиной 13
ДУ выключателя изображено на рис. 18 25,6. При размыкании дугогасительных контактов 1 и 2 возникает дуга А, которая под действием электродинамических сил и конвекционных потоков воздуха перемещается в положение Б Этому также способствует воздушное дутьевое устройство. Один конец дутьевой катушки 3 соединен с неподвижным контактом 1, второй — с левым рогом 5. При перемещении дуги вверх она касается рога 5, при этом участок дуги между контактом 1 и нижним концом рога 5 шунтируется дутьевой катушкой. Так как полное сопротивление катушки мало, то этот участок дуги гаснет и катушка 1 включается в коммутируемую цепь последовательно. Магнитный поток, создаваемый катушкой 3, проходит по полюсным наконечникам (поз. 12, рис. 25, а), с помощью которых магнитное поле направляется перпендикулярно плоскости (рис. 25,6). Силы взаимодействия тока дуги и поля перемешают дугу вверх и затягивают ее в ДУ, состоящее из пакета керамических пластин с вырезами (рис. 4.24). При перемещении дуги в положение Г правый конец дуги переходит на дугогасительный рог 4 и включается вторая система магнитного дутья. В результате дуга движется с большой скоростью (около 100 м/с). По мере перемещения вверх дуга деформируется, принимая зигзагообразную форму Е (в горизонтальной плоскости), удлиняется и тесно соприкасается с пластинами ДУ. Это приводит к росту сопротивления дуги и напряжения на ней. Из-за эффективного отвода тепла от дуги градиент напряжения на ней, В/м, не зависит от тока.
Рис. 26. Изменение угла между током и напряжением в ДУ электромагнитного выключателя
В результате сопротивление дуги становится больше сопротивления Х„ коммутируемой цепи, ток в цепи и сдвиг фаз между током и напряжением цепи уменьшаются, что приводит к облегчению восстановления напряжения на контактном промежутке.
Осциллограмма процесса отключения электромагнитного выключателя представлена на рис. 26.
До момента размыкания контактов фк=90°. При первом прохождении через нуль напряжение на дуге мало и дуга загорается вновь. По мере удлинения и охлаждения дуги напряжение на ней увеличивается. К моменту третьего прохождения тока через нуль напряжение значительно больше возвращающегося напряжения промышленной частоты, при этом обеспечивается неравенство (1). Из-за значительного сопротивления дуги ток
к моменту гашения дуги значительно уменьшается.
Описанный выключатель обеспечивает 104 коммутационных циклов при Iном=1600 А и 5-10-3 циклов при Iном = 3600 А без ревизии и ремонта Механическая износостойкость его составляет 5-104 циклов. Поэтому выключатели этой серии применяются при большой частоте операций.
Выключатель имеет пружинный привод, который заводится двигателем. Привод обеспечивает однократный цикл 0—0,3—ВО с бестоковой паузой 0,3 с В юрой цикл может быть совершен через 15 с после завода включающих пружин.
Недостатком электромагнитных выключателей является большая проводимость стенок ДУ. Узкие щели ДУ нагреваются дугой до очень высоких температур, при которых начинают проводить ток. Большой остаточный ток может приводить к пробою по раскаленной поверхности пластин. Из-за этого номинальное напряжение электромагнитных выключателей не превышает 10 кВ
Вакуумные выключатели — Выключатели высокого напряжения
ВАКУУМНЫЕ ВЫКЛЮЧАТЕЛИ
В вакуумных выключателях контакты расходятся в среде с давлением 10
4 Па. При таком вакууме дугогасительный промежуток имеет очень высокую электрическую прочность — примерно 100 кВ/мм. Малая плотность воздуха создает возможность гашения дуги без ДУ за время 0,01— 0,02 с. Все это дает возможность создать выключатели с малым износом контактов, работающие при минимальном техническом обслуживании в течение нескольких десятков лет. Это определяет перспективность развития и широкого применения вакуумных выключателей. Процесс гашения дуги в вакууме рассмотрен ранее. Здесь добавим, что образующиеся под действием высокой температуры ионы движутся к электродам, создавая вблизи них соответствующие объемные заряды. Поток электронов направляется к аноду и производит его бомбардировку. Освобождающиеся из анода положительные ионы движутся к катоду и разрушают его. Эти процессы определяют срок службы контактов.
Следует отметить, что высокие значения напряженности электрического поля (при малых расстояниях между контактами) являются также причиной возникновения дуги в вакууме благодаря автоэлектронной эмиссии.
Малая плотность среды обусловливает очень высокую скорость диффузии зарядов из-за большой разницы плотностей частиц в разряде и вакууме. Быстрая диффузия частиц, высокая электрическая прочность вакуума позволяют эффективно гасить дугу в вакуумном выключателе.
Для работы вакуумного выключателя имеет большое значение дегазация контактов, так как адсорбированные ими газы при разогреве выделяются и ухудшают вакуум. С целью удаления газовых включений из контактов их нагревают в течение нескольких часов до красного каления.
При работе выключателя распыленные материалы контактов осаждаются на поверхности изоляционного цилиндра, что создает возможность перекрытия изоляции. Для защиты цилиндра от паров металла электроды защищаются специальными металлическими экранами 8, 9 (рис. 27). При отсутствии экранов электрон, разгоняясь в электрическом поле по длинному пути, приобретает высокую энергию и при столкновении с молекулой может вызывать ее ионизацию. Благодаря экранам 8 и 9 электрическое поле разбито на два небольших участка (между электродами 9 и 8 и между электродами 8 и 9). Возможность перекрытия внутри камеры резко снижается.
При переменном токе после прохождения тока через нуль происходит быстрое рассасывание зарядов вследствие диффузии, и через 10 мкс между контактами восстанавливается электрическая прочность вакуума. Быстрое нарастание электрической прочности промежутка после прохождения тока через нуль является большим достоинством вакуумных выключателей.
Для вакуумной дуги характерен обрыв (срез) тока при подходе к нулевому значению. При уменьшении тока падает давление паров металла, дуга становится неустойчивой и гаснет. Резкие уменьшения тока могут вызывать перенапряжения, опасные для отключаемого оборудования. Ток среза зависит как от параметров отключаемой цепи, так и от свойств материала контактов. Вольфрам обладает устойчивостью к свариванию, высокой температурой плавления и износостойкостью. Однако при вольфрамовых контактах значения тока среза и перенапряжений очень высоки, так как пары вольфрама создают низкое давление. Перенапряжения при медных контактах в 2,5 раза ниже, но они более подвержены свариванию и износу. Эти противоречия устраняются, если часть контактной поверхности выполнена из дугостойкого металла (молибден), а другая часть — из материала с высоким давлением паров (сурьма). Хорошие результаты дает специальная металлокерамика. Наличие вакуума ухудшает охлаждение контактов. Однако за счет увеличения размеров подводящих шин, совершенствования конструкции ДУ и контактных материалов удается довести длительные токи до необходимых значений.
В вакуумной дугогасительной камере (рис. 27) контактный стержень 4 с контактным наконечником 1—2 жестко укреплен в металлическом фланце 6 керамического корпуса 10. Контактный стержень подвижного контакта 5 связан с сильфоном 7, выполненным из нержавеющей стали. Сильфон представляет собой цилиндрическую эластичную гармошку. Поэтому стержень 5 имеет возможность осевого перемещения. Внутренняя полость сильфона связана с атмосферой, поэтому контакт 3 верхнего контакта нажимает на контакт 3 нижнего контакта с силой, равной произведению площади сильфона Sc на атмосферное давление. Допустим, Sc=100 см2, тогда контактное нажатие равно 1000 Н, что достаточно для пропускания небольшого номинального тока. При больших номинальных токах и для получения необходимой динамической стойкости ставится дополнительная пружина, создающая необходимое нажатие контактов. Металлические экраны 8 и 9 служат для выравнивания электрического поля между контактами с целью повышения электрической прочности. Экран 8 защищает также керамику 10 от напыления паров металла, образующихся при гашении дуги. Контакты 1 и 2 имеют форму, показанную на рис. 28. Касание контактов 1 происходит в шести точках, что позволяет снизить переходное сопротивление и уменьшить температуру контактов. Следует отметить, что тепло, выделяемое в контактах 1, V и контактных стержнях 4, 5, отводится в основном теплопроводностью к нижнему фланцу 6 и шинам, соединяемым с контактом 5. Из-за высокого вакуума отдача тепла в радиальном направлении идет только за счет излучения.
Рис. 27. Вакуумная дугогасительная камера
Рис. 28. Контакты ДУ
Поперечное магнитное поле в месте перехода тока из контакта 1 в контакт 1′ быстро перебрасывает дугу на криволинейные сегменты 2 (рис. 28). Перемещение дуги по контактам с большой скоростью позволяет уменьшить эрозию контактов и снизить количество паров металла в вакуумной дуге. При таких контактах удалось поднять номинальный ток отключения до 31,5 кА при напряжении 10 кВ. Однако при больших токах отключения напряжение на дуге начинает расти с увеличением тока (до 100В и выше). При этом энергия дуги увеличивается, процесс гашения затрудняется. Как показали исследования, если мощная вакуумная дуга находится в продольном магнитном поле (индукция направлена по оси камеры), то удается снизить напряжение на дуге при больших токах (до 50 В) и отключать токи 100 кА при напряжении сети 10 кВ [9].
Параметры камеры КДВ-10-1600-20
Номинальное напряжение, кВ. 10
Номинальный ток отключения, кА. 20
Длительный ток, кА, при дополнительном поджатии контактов
1600 Н . 1,6
Средний ток среза, А, не более. 10
Электрическая износостойкость, циклов ВО:
при токе 1600 А. 10000
при токе 20 кА. 25
Механическая износостойкость, циклов ВО. 2-104
Допустимый износ контактов, мм. 4
Ход подвижного контакта, мм. 12
Скорость подвижного контакта, м/с:
при включении. 0,5—0,7
при отключении. 2
Срок службы ДУ, лет. 25
Общий вид выключателя, использующего ДУ по рис. 27, дан на рис. 29. Дугогасительные камеры 1, залитые в эпоксидный компаунд, имеют выходные контакты 2 в виде розеток. ДУ укреплены на тележке 3, в которой расположены механизм и привод выключателя.
Параметры вакуумных ДУ приведены в [3.1]. Высокая износостойкость вакуумных ДУ позволила создать вакуумные контакторы, примером которых может быть трехфазный контактор КВТ-6/10-400-4-У2 со следующими параметрами: номинальное напряжение 6 и 10 кВ; номинальный ток 400 А; номинальный ток отключения 4 кА; коммутационная износостойкость при номинальном токе 105 циклов ВО, при токе 4 кА—50 циклов ВО; механическая износостойкость 106 циклов ВО; частота включений в час 300.
Рис. 29. Вакуумный выключатель
В настоящее время ведутся работы по увеличению номинального напряжения одного разрыва выключателя до 80 кВ при токе отключения 40 кА.
В заключение следует отметить следующие преимущества вакуумных выключателей перед другими типами:
1) отсутствие специальной дугогасящей среды, требующей замены;
2) высокая износостойкость, обеспечивающая срок службы выключателей до 25 лет при минимальных эксплуатационных затратах;
3) быстрое восстановление электрической прочности междуконтактного промежутка;
4) полная взрыво- и пожаробезопасиость, отсутствие выбросов продуктов горения дуги в окружающее пространство;
5) высокое быстродействие, обусловленное малой массой контактов и их малым ходом;
6) широкий диапазон рабочих температур — от 70 до +200 °С.
К недостаткам можно отнести: возникновение больших перенапряжений при отключении индуктивной нагрузки, что может приводить к повреждению изоляции; большие трудности при создании выключателей на номинальное напряжение 100 кВ и выше, когда приходится соединять несколько разрывов последовательно; сложность разработки и изготовления, большие затраты для организации производства. Тем не менее при массовом производстве себестоимость вакуумного выключателя приближается к себестоимости маломасляных и электромагнитных. При напряжении до 35 кВ вакуумный выключатель является наиболее перспективным, особенно при отключении больших токов высокой частоты.
При массовом производстве вакуумные выключатели всего на 5—15% дороже маломасляных и дешевле электромагнитных. Экономия эксплуатационных расходов обусловливает все более широкое распространение вакуумных выключателей (в Японии 50 % всех выключателей вакуумные)
Синхронизированные выключатели — Выключатели высокого напряжения
9. СИНХРОНИЗИРОВАННЫЕ ВЫКЛЮЧАТЕЛИ
Во всех рассмотренных выше выключателях расхождение контактов может начинаться при любом значении коммутируемого тока.
Интеграл берется за каждый полупериод, после чего энергия суммируется.
Возрастание номинального тока отключения выключателей ведет к увеличению энергии Лд, выделяемой в дуговом промежутке. При этом усложняется конструкция выключателей, увеличиваются их габаритные размеры и масса. Кроме того, с ростом энергии Аа увеличивается износ контактов. Даже применение металлокерамических контактов не решает этого вопроса при большом числе отключений.
Режим отключения можно значительно облегчить, если ограничить выделяемую в дуге энергию. Это достигается синхронизацией момента начала расхождения контактов с моментом прохождения тока через нуль при высокой скорости движения контактов.
Рис. 30. Синхронизированное отключение цепей высокого напряжения:
а — структурная схема синхронизированного выключателя; б — к пояснению метода синхронизации
Структурная схема одного из вариантов синхронизированного выключателя представлена на рис. 30. Трансформатор тока ТА питает синхронизатор 1, который выдает запускающий импульс 1,5—2 мс до момента прохождения тока через нуль. К этому моменту расстояние между контактами должно быть достаточным для надежного гашения дуги. При этом энергия, выделяемая при расхождении контактов, уменьшается в 10—50 раз. Уменьшается не только время горения дуги (до 1,5—2 мс), но и максимальное значение тока в дуге (до 0,21т). Все это создает благоприятные условия для гашения дуги при первом прохождении тока через нуль.
На логический элемент 3 подаются сигналы от синхронизатора 1 и релейной защиты 2. Сигнал на выходе этого блока появляется при наличии сигнала от релейной защиты. От логического элемента 3 подается сигнал в систему оптической передачи 4—6. Сигнал по волоконному световоду 5 поступает на фотоприемник 6, в качестве которого используются фотодиоды либо фототиристоры. Сигнал приемника 6 используется для управления индукционно-динамическим приводом 7, 8, обеспечивающим необходимую скорость подвижного контакта 9 выключателя.
Принцип действия индукционно-динамического привода следующий. От источника питания ИП через трансформатор Т и диод заряжается конденсаторная батарея с емкостью С=100н-300 мкФ и напряжением батареи 3—5 кВ. При поджиге трехэлектродного разрядника 10 конденсатор разряжается на катушку 7, расположенную вблизи диска 8, изготовленного из материала с очень малым электрическим сопротивлением. Диск жестко связан с подвижным контактом 9. Разряд батареи имеет колебательный характер с частотой 1—5 кГц. Под действием магнитного поля катушки, изменяющегося с такой частотой, в диске наводятся вихревые токи. Эти токи взаимодействуют с током катушки и создают силу, отталкивающую диск от катушки. Диск жестко связывается с подвижным контактом.
Описанный индукционно-динамический привод обладает очень высоким быстродействием.
Для повышения быстродействия диск привода связан с подвижным контактом без каких-либо промежуточных передач. Время передачи импульса от синхронизатора до трехэлектродного разрядника составляет десятки микросекунд, так что полное время отключения выключателя не превышает 1,5—2 мс.
Схемы и методы синхронизации весьма разнообразны [3, 9]. Рассмотрим принцип синхронизации с запоминанием тока (метод МЭИ). Назовем время подачи синхронизирующего сигнала временем упреждения гупр. После начала КЗ производится измерение значения тока и времени его наступления (рис. 30,6).
Полное время отключения синхронизированного выключателя вместе с защитой лежит в пределах 0,02 с.
По сравнению с другими типами синхронизированные выключатели имеют следующие преимущества:
1. Малая длительность горения дуги. Значительно уменьшаются износ контактов и эксплуатационные расходы.
2. Облегчается процесс гашения дуги. Уменьшение выделяемой дугой энергии позволяет увеличить номинальный ток отключения при том же расходе воздуха.
3. Увеличивается скорость восстановления электрической прочности промежутка. Работа выключателя при высоких скоростях восстановления напряжения допустима без шунтирующих резисторов.
4. Отключение КЗ за время г
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Источник
Электромагнитные выключатели. Типы, виды, устройство, работа электромагнитных выключателей
Выключатели электромагнитные обладают теми достоинствами, что для своей работы не требуют ни масла, ни сжатого воздуха, ни тем более элегаза, они допускают большое число включений. Однако отключающая способность их ограничена по напряжению. Гашение в электромагнитных выключателях основано на воздействии на ствол дуги и достижении падения напряжения на стволе дуги, большего приложенного. Они находят применение как выключатели для КРУ на напряжение 6—20 кВ, токи до 3200 А при частых коммутациях (выключатели нагрузки — выключатели в цепях мощных двигателей и других нагрузок).
Гашение дуги здесь осуществляется при помощи магнитного дутья в камерах с продольными (прямыми, извилистыми и т. п.) щелями. Катушки магнитного дутья и токопроводы к ним обычно при замкнутых контактах не обтекаются током. При отключении возникающая дуга перебрасывается на эти детали и включает их последовательно в цепь тока. Возбуждается поле гашения дуги. Дуга гаснет, ток в цепи обрывается. Таким образом, эти детали находятся под током только на время гашения — примерно 0,02 с.
Рис. 1-14. Контактная и дугогасительная системы электромагнитного выключателя.
На рис. 1-14, а представлена схема контактной и дугогасительной систем электромагнитного выключателя. Контактная система состоит из основных 1 и 2 и дугогасительных 3 и 10 контактов, последние имеют дугостойкие напайки. Дугогасительная система состоит из изоляционной камеры 4 и охватывающего камеру П-образного магнитопровода 5, на среднюю часть которого надета дугогасительная катушка 6. Внутри камеры размещен пакет дугогасительных керамических пластин 8, расположенных на небольшом расстоянии друг от друга. В нижней части пластины имеют вырезы, постепенно сужающиеся кверху. Пластины образуют постепенно сужающуюся зигзагообразную щель (рис. 1-14,6). По бокам пакета укреплены дугогасительные рога. Рог 7 электрически соединен только с дугогасительной катушкой. Второй конец катушки присоединен к неподвижному контакту. Рог 9 соединен с подвижным контактом. При замкнутых контактах катушка не обтекается током. Возникающая при размыкании контактов дуга движется сначала под действием только электродинамических сил контура (положения А и Б) и перебрасывается этими силами на рога 7 и 9. При этом в контур тока включается дугогасительная катушка, и созданное ею магнитное поле загоняет дугу в решетку (положения В, Г и Д), где и происходит ее гашение. Многие дугогасительные устройства имеют пламегасительные решетки.
В системах с электромагнитным дутьем затруднено гашение малых токов ввиду соответственно малых электродинамических сил, подчас недостаточных для растяжения дуги и переброса ее на рога. Поэтому многие конструкции снабжаются небольшим автопневматическим устройством, связанным с подвижной системой и действующим на начальном этапе расхождения контактов.
Все три полюса выключателя монтируются на стальной сварной раме, имеющей катки. В нижней части рамы расположен привод. Как правило, привод электромагнитный, но может быть и другой. На опорных фарфоровых изоляторах, закрепленных на вертикальной стойке рамы, укреплены контактная и дугогасительная системы. Токоподводы при встройке выключателя в КРУ снабжаются втычными контактами. Подвижные контакты трех полюсов связаны изоляционными тягами с общим валом выключателя. Дугогасительная камера и контакты каждого полюса закрыты изоляционным кожухом, отделяющим полюсы выключателя друг от друга и от стенок распределительного устройства.
Механическая износостойкость выключателей-до 50000 циклов, коммутационная — 5000 отключений.
Источник