Меню

Задачи с мощностью множества

Решение некоторых задач по теории множеств

Разделы: Математика

На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.

Введем определение множества, а так же некоторые обозначения.

Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.

Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.

Можно сделать такую запись определения множества:

“ ” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.

Два множества будем называть равными, если они состоят из одних и тех же элементов

Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если , то , где “С” знак подмножества или включения.

Графически это выглядит так (рис.1):

Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.

Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).

Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.

Это определение можно записать с помощью обозначений:

где “ υ ” – знак объединения,

“ / ” – заменяет слова ”таких что“

Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:

“∩“ – знак пересечения. (рис.3)

Обозначим буквой Е основное или универсальное множество, где A С Е (“ ”- любо число), т.е. А Е = Е; А Е =А

Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается Ā Е или Ā (рис.4)

Е

Примерами для понимания этих понятий являются свойства:

А Ā=Е Ø = Е Е Ā=Ā

Свойства дополнения имеют свойства двойственности:

Введем еще одно понятие – это мощность множества.

Для конечного множества А через m (A) обозначим число элементов в множестве А.

Из определение следуют свойства:

Для любых конечных множеств справедливы так же утверждения:

m (A B) =m (A) + m (В) – m (А∩В)

m (A∩B) = m (A) + m (В) – m (А В)

m (A B C) = m (A) + m (В) + m (С)– m (А∩В) — m (А∩С) – m (В∩С) – m (А∩В∩С).

А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.

Задача №1

В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

Читайте также:  Общую мощность предприятия определяет

По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

  1. Сколько учащихся решили все задачи?
  2. Сколько учащихся решили только две задачи?
  3. Сколько учащихся решили только одну задачу?

Задача № 2

Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

Сколько студентов успешно решили только одну контрольную работу?

Задача № 3

В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

Сколько учеников пользуются только одним видом транспорта?

Решение задачи № 1

Запишем коротко условие и покажем решение:

  • m (Е) = 40
  • m (А) = 20
  • m (В) = 18
  • m (С) = 18
  • m (А∩В) = 7
  • m (А∩С) = 8
  • m (В∩С) = 9

m (А В С) = 3 => m (А В С) = 40 – 3 = 37

Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

К 1 – множество учеников, решивших только одну задачу по алгебре;

К 2 – множество учеников, решивших только две задачи по алгебре и геометрии;

К 3 – множество учеников, решивших только задачу по геометрии;

К 4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

К 5 – множество всех учеников, решивших все три задачи;

К 6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

К 7 – множество всех учеников, решивших только задачу по тригонометрии;

К 8 – множество всех учеников, не решивших ни одной задачи.

Используя свойство мощности множеств и рисунок можно выполнить вычисления:

  • m (К 5 ) = m (А∩В∩С)= m (А В С) — m (А) — m (В) — m (С) + m (А∩В) + m (А∩С) + m (В∩С)
  • m (К 5 ) = 37-20-18-18+7+8+9=5
  • m (К 2 ) = m (А∩В) — m (К 5 ) = 7-5=2
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 8-5=3
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-5=4
  • m (К 1 ) = m (А) — m (К 2 ) — m (К 4 ) — m (К 5 ) = 20-2-3-5=10
  • m (К 3 ) = m (В) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 18-2-4-5=7
  • m (К 7 ) = m (С) — m (К4) — m (К 6 ) — m (К 5 ) = 18-3-4-5 =6
  • m (К 2 ) + m (К 4 ) + m (К6) = 2+3+4=9 – число учеников решивших только две задачи;
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 10+7+6=23 – число учеников решивших только одну задачу.

Ответ:

5 учеников решили три задачи;

9 учеников решили только по две задачи;

23 ученика решили только по одной задаче.

С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

  • m (А В) = 33
  • m (А С) = 31
  • m (В С) = 32
  • m (К 2 ) + m (К 4 ) + m (К 6 ) + m (К 5 ) = 20

Найти m (К 1 ) + m (К 3 ) + m (К 7 )

  • m (АUВ) = m (К 1 ) + m (К 2 ) + m (К 3 ) + m (К 4 ) + m (К 5 ) + m (К 6 ) = m (К 1 ) + m (К 3 ) + 20 = 33 =>
  • m (К 1 ) + m (К 3 ) = 33 – 20 = 13
  • m (АUС) = m (К 1 ) + m (К 4 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) = m (К 1 ) + m (К 7 ) + 20 = 31 =>
  • m (К 1 ) + m (К 7 ) = 31 – 20 = 11
  • m (ВUС) = m (К 3 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) + m (К 4 ) = m (К 3 ) + m (К 7 ) + 20 = 32 =>
  • m (К 3 ) + m (К 7 ) = 32 – 20 = 12
  • 2m (К 1 ) + m (К 3 ) + m (К 7 ) = 13+11=24
  • 2m (К 1 ) + 12 = 24
  • m (К 3 )= 13-6=7
  • m (К 7 )=12-7=5
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 6+7+5=18
Читайте также:  Мощность шуруповерта bosch 12v

Ответ:

Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

  • m (Е) = 35
  • m (А∩В∩С)= m (К 5 ) = 6
  • m (А∩В)= 15
  • m (А∩С)= 13
  • m (В∩С)= 9

Найти m (К1) + m (К3) + m (К 7 )

  • m (К 2 ) = m (А∩В) — m (К 5 ) = 15-6=9
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 13-6=7
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-6=3
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = m (Е) — m (К 4 ) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»

Источник

Задачи с множествами

Множество — это совокупность объектов, которая рассматривается как единое целое и обладающих определенным свойством (признаком). Множество может быть ученники класса, фрукты, автомобили на парковке и т.д. В задачах ЕГЭ множествами являются сайты — результаты поисковых запросов в интернете.

Объекты, составляющие множество, называются элементами.

Множества принято обозначать латинскими буквами. Для наглядности множества представляют в виде окружностей, так называемых кругов Эйлера.

Пустым множество называется множество, которое не содержит элементы. Обозначается ∅.

Объединение. Объединение множеств A и B — это множество всех элементов, которые принадлежат хотя бы одному из множеств A или B. Обозначется A ∪ B. В языке запросов поисковых машин объединению соответствует знак | — или.

Объединение множеств

Пересечение. Пересечение множеств A и B — это множество элементов, которые принадлежат обоим множествам A и B. Обозначается A ∩ B. В языке запросов поисковых машин пересечению соответствует знак & — И.

Пересечение множеств

Разность. Разность множеств A и B — это множество элементов множества A, которые не принадлежат множеству B. Обозначается A \ B.

Разность множеств

Мощностью множества называется число его элементов. Обозначается |A|

Для вычисления мощности объединения множеств имеет место быть формула (принцип включений и исключений):

|A ∪ B| = |A| + |B| — |A ∩ B|

Для вычисления мощности объединения трех множеств:

|A ∪ B ∪ C| = |A| + |B| + |C| — |A ∩ B| — |A ∩ C| — |B ∩ C| + |A ∩ B ∩ C|

Множества A B C

Задача: В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц
(тыс.)
торты | пироги 12000
торты & пироги 6500
пироги 7700

Сколько страниц (в тысячах) будет найдено по запросу » торты»?

Решение: Обозначим буквой Т — множество страниц, отвечающих запросу «торты», а буквой П — отвечающих запросу «пироги». Тогда по формуле включений и исключений:

|Т | П| = |Т| + |П| — |Т & П|. Подставляем известные значения: 12000 = |Т| + 7700 — 6500, следовательно |Т| = 10800. Ответ: 10800

Задача: В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет:

Запрос Количество страниц
(тыс.)
Толстой & Гоголь & Чехов 110
Гоголь & Чехов 275
Толстой & Чехов 215

Компьютер печатает количество страниц (в тысячах), которое будет найдено по следующему запросу: (Толстой|Гоголь) & Чехов Укажите целое число, которое напечатает компьютер. Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение: Представим множества страниц, найденных по запросам в виде кругов Эйлера. Каждую область пронумеруем, а мощность множества соответствующей области будем обозначать как Ni, где i — номер области (множества).

Читайте также:  Трансформаторная подстанция мощность 250 квт

Множества Толстой Гоголь Чехов

Сложим второе и третье равентства: N4 + 2N5 + N6 = 490, или N4 + N5 + N6 = 490 — N5 , подставим в правую часть известное нам значение N5, N4 + N5 + N6 = 380. Ответ: 380

Источник



Теория множеств: примеры решений задач

На этой странице вы найдете готовые примеры по базовому разделу дискретной математики: элементам теории множеств. Типовые задачи снабжены подробным решением, формулами, пояснениями. Используйте их, чтобы научиться решать подобные задачи или закажите решение своей работы нам.

Основные темы (множества) : задание множеств, действия с множествами (пересечение, объединение, разность, дополнение); формула включений-исключений и применение для практических задач; декартово произведение множеств, мощность множества, построение диаграмм Эйлера-Венна.

Задачи с решениями о множествах онлайн

Задача 1. Начертите фигуры, изображающие множества , где — вещественная плоскость. Какие фигуры изображают множества ?

Задача 2. Докажите тождество

Задача 3. Установите взаимно однозначное соответствие между всеми прямыми на плоскости и всеми точками координатной оси Ох.

Задача 4. М — подмножество множества натуральных чисел. 10 элементов множества являются простыми числами, а остальные кратны либо 2, либо 3, либо 5. Определить мощность множества , если оно содержит: 70 чисел кратных 2; 60 чисел кратных 3; 80 числе кратных 5; 98 чисел кратных или 2 или 3; 95 чисел кратных или 2 или 5; 102 числа кратных или 3 или 5; 20 чисел, кратных 30.

Задача 5. Проверить справедливость тождеств или включений, используя алгебру множеств и диаграммы Эйлера-Венна.

Задача 6. Записать множества $A, B, C$ перечислением их элементов и найти . если
$A$ — множество корней уравнения $x^2-12x-28=0$,
$B$ — множество делителей числа 28,
$C$ — множество нечетных чисел $X$, таких что $0 \le X \le 7$.

Задача 7. Задано универсальное множество $U=\<1,2,3,4,5,6,7,8\>$ и множества $X=\<1,3,6,7\>$, $Y=\<3,4,7,8\>$, $Z=\<3,4,7,8\>$. Записать булеан множества $X$, любое разбиение множества $Y$, покрытие множества $Z$. Выполнить действия $(X \setminus Y)\cap \bar Z$.

Задача 8. Решить задачу, используя диаграмму Эйлера-Венна.
Четырнадцать спортсменов участвовали в кроссе, 16 – в соревнованиях по плаванию, 10 – в велосипедных гонках. Восемь участников участвовали в кроссе и заплыве, 4 – в кроссе и велосипедных гонках, 9 – в плавании и велосипедных гонках. Во всех трех соревнованиях участвовали три человека. Сколько всего было спортсменов?

Задача 9. Пусть $Р(А)$ – множество всех подмножеств множества $А$. В каждом из следующих упорядоченных множеств укажите все минимальные и все максимальные элементы; найдите наибольший и наименьший элементы, если они есть, или докажите их отсутствие:

Задача 10. В химическом продукте могут оказаться примеси четырёх видов – $a,b,c,d$. Приняв в качестве исходного множества $М = \$, образуйте множество всех его подмножеств $В(М)$. Дайте содержательную интерпретацию этого множества и его элементов. Каким ситуациям соответствуют, в частности, несобственные подмножества?

Решение задач о множествах на заказ

Выполняем для студентов очников и заочников решение заданий, контрольных и практических работ по любым разделам теории множеств. Также оказываем помощь в сдаче тестов. Подробное оформление, таблицы, графики, пояснение, использование специальных программ при необходимости. Стоимость примера от 100 рублей , оформление производится в Word, срок от 2 дней.

Источник