Меню

Запишите уравнения гармонических колебаний для напряжения

Формула Томсона. Гармонические колебания заряда и тока

Формула Томсона

В уравнении (3.11) коэффициент представляет собой квадрат собственной частоты колебаний. Поэтому и коэффициент в уравнении (4.9) также представляет собой квадрат циклической частоты — в этот раз для свободных электрических колебаний:

Свободные электрические колебания

Период свободных колебаний в контуре, таким образом, равен:

Формула Томсона

Формула (4.11) называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Увеличение периода свободных колебаний с возрастанием L и С наглядно можно пояснить так. При увеличении индуктивности L ток медленнее нарастает со временем и медленнее падает до нуля. А чем больше емкость С, тем большее время требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока

Подобно тому как координата при механических колебаниях (в случае, когда в начальный момент времени отклонение тела маятника от положения равновесия максимально) изменяется со временем по гармоническому закону:

заряд конденсатора меняется с течением времени по такому же закону:

где qm — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

Сила тока совершает гармонические колебания

где Im = qmω — амплитуда колебаний силы тока. Колебания силы тока опережают по фазе на колебания заряда (рис. 4.7).

Простейшая система, где наблюдаются свободные электромагнитные колебания

Точно так же колебания скорости тела в случае пружинного или математического маятника опережают на колебания координаты (смещения) этого тела.

В действительности, из-за неизбежного наличия сопротивления электрической цепи, колебания будут затухающими. Сопротивление R также будет влиять и на период колебаний, чем больше сопротивление R, тем бо́льшим будет период колебаний. При достаточно большом сопротивлении колебания совсем не возникнут. Конденсатор разрядится, но перезарядки его не произойдет, энергия электрического и магнитного полей перейдет в тепло.

Простейшая система, где наблюдаются свободные электромагнитные колебания, — колебательный контур. Уравнение (4.9) — это основное уравнение, описывающее свободные электрические колебания в контуре.

Читайте также:  Испытание инструмента ручного напряжением

Вопросы к параграфу

1. В чем различие между свободными и вынужденными электрическими колебаниями?

2. Как изменится период свободных электрических колебаний в контуре, если емкость конденсатора в нем вдвое увеличить или же вдвое уменьшить?

3. Как связаны амплитуды колебаний заряда и тока при разрядке конденсатора через катушку?

Источник



Запишите уравнения гармонических колебаний для напряжения

Вы будете перенаправлены на Автор24

Колебаниями называют любые периодические движения. Если при таких движениях изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Уравнение гармонических колебаний можно записать следующим образом:

где $t$-время; $q$ заряд, $q_0$— максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; $<\omega >_0t+<\alpha >_0$- фаза колебаний; $<\alpha >_0$- начальная фаза; $<\omega >_0$- циклическая частота. За период фаза меняется на $2\pi $.

Готовые работы на аналогичную тему

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac<\pi ><2>.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Читайте также:  Как выбрать стабилизатор для стиральной машины напряжения 220в

Если сопротивление, которое входит в состав контура $R \[q=A_0e^<\left(-\beta t\right)>_0\right)\left(7\right),\ >\]

где $\omega =\sqrt<\frac<1>-\frac<4L^2>>$ — циклическая частота колебаний. $\beta =\frac<2L>-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени ($<\alpha >_0$) равна:

При $R >2\sqrt<\frac>$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что $<\omega >_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Ответ: $T=0,1$ c, $C=2,5\cdot <10>^<-4>Ф.$

Источник